Created
February 10, 2018 22:40
-
-
Save hrbrmstr/7dd469e8ed69945e3f7f0c53cc1bdd14 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(quantmod) # install.packages("quantmod") | |
library(geofacet) # install.packages("geofacet") | |
library(hrbrthemes) # install.packages("hrbrthemes") | |
library(rvest) # install.packages("rvest") | |
library(lucr) # install.packages("lucr") | |
library(tidyverse) # install.packages("tidyverse") | |
get(getSymbols("CPIAUCSL", src='FRED')) %>% | |
as.data.frame() %>% | |
rownames_to_column("date") %>% | |
set_names(c("date", "cpi")) %>% | |
as_tibble() -> cpi | |
rm("CPIAUCSL") | |
get(getSymbols("CES4200000008", src="FRED")) %>% | |
as.data.frame() %>% | |
rownames_to_column("date") %>% | |
set_names(c("date", "hourly_wage")) %>% | |
as_tibble() -> earnings | |
rm("CES4200000008") | |
filter(cpi, date == "2017-01-01") %>% | |
pull(cpi) -> base_cpi # 2017-01-01 | |
left_join(earnings, cpi) %>% | |
mutate(adj = cpi / base_cpi) %>% | |
mutate(hourly_wage_adj = hourly_wage / adj) -> earnings_adj_2017 | |
select(earnings_adj_2017, -cpi, -adj) %>% | |
gather(measure, value, -date) %>% | |
mutate(date = as.Date(date)) %>% | |
ggplot(aes(date, value, group=measure)) + | |
geom_line(aes(color=measure)) | |
select(earnings_adj_2017, -cpi, -adj) %>% | |
mutate(year = substr(date, 1, 4)) %>% | |
group_by(year) %>% | |
summarise( | |
annual_mean_wage = mean(hourly_wage) * 34 * 40, # 34 hours worked per week, 40 weeks worked per year | |
annual_mean_wage_adj = mean(hourly_wage_adj) * 34 * 40 | |
) -> annual_wage_adj_2017 | |
annual_wage_adj_2017 %>% | |
gather(measure, value, -year) %>% | |
mutate(date = as.Date(sprintf("%s-01-01", year))) %>% | |
ggplot(aes(date, value, group=measure)) + | |
geom_line(aes(color=measure)) | |
housing <- read_lines("https://www.census.gov/hhes/www/housing/census/historic/values.html") | |
housing[ | |
(which(str_detect(housing, "Median Home Values: Unadjusted"))+7): | |
(which(str_detect(housing, "Source: U.S. Census Bureau"))-3) | |
] %>% | |
str_split("\\$|NA", simplify = TRUE) %>% | |
trimws() %>% | |
gsub(",", "", .) %>% | |
as_data_frame() %>% | |
mutate_at(as.numeric, .vars=sprintf("V%d",2:8)) %>% | |
set_names(c("state", seq(2000, 1940, -10))) %>% | |
gather(year, value, -state) -> housing_by_year_unadjusted | |
mutate(cpi, year = substr(date, 1, 4)) %>% | |
group_by(year) %>% | |
summarise(mean_cpi = mean(cpi)) -> mean_annual_cpi | |
filter(mean_annual_cpi, year == "2017") %>% | |
pull(mean_cpi) -> base_mean_cpi # 2017 | |
left_join(housing_by_year_unadjusted, mean_annual_cpi) %>% | |
mutate(adj = mean_cpi / base_mean_cpi) %>% | |
mutate(value_adj = value / adj) -> median_raw_housing_by_decade_and_state | |
median_raw_housing_by_decade_and_state %>% | |
mutate(year = as.Date(sprintf("%s-01-01", year))) %>% | |
select(-mean_cpi, -adj) %>% | |
gather(measure, value, -state, -year) %>% | |
ggplot(aes(year, value, group=measure)) + | |
geom_line(aes(color=measure)) + | |
scale_x_date(date_labels="%y") + | |
scale_y_comma(name="Media Home Price") + | |
facet_geo(~state) + | |
labs(x=NULL) + | |
theme_ipsum_rc(grid="XY", axis_text_size = 6, strip_text_size = 8) + | |
theme(panel.spacing=unit(0, "lines")) | |
median_raw_housing_by_decade_and_state %>% | |
left_join( | |
annual_wage_adj_2017 %>% | |
mutate(year = sprintf("%s0", substr(year, 1, 3))) %>% | |
group_by(year) %>% | |
summarise(mean_wage_adj = mean(annual_mean_wage_adj, na.rm=TRUE)) | |
) %>% | |
select(-value, -mean_cpi, -adj) %>% | |
gather(measure, value, -state, -year) %>% | |
mutate(year = as.Date(sprintf("%s-01-01", year))) %>% | |
ggplot(aes(year, value, group=measure)) + | |
geom_line(aes(color=measure)) + | |
scale_x_date(date_labels="%y") + | |
scale_y_comma(name="Media Home Price") + | |
geofacet::facet_geo(~state) + | |
labs(x=NULL) + | |
theme_ipsum_rc(grid="XY", axis_text_size = 6, strip_text_size = 8) + | |
theme(panel.spacing=unit(0, "lines")) | |
read_html("https://college-education.procon.org/view.resource.php?resourceID=005532") %>% | |
html_nodes("table") %>% | |
.[3] %>% | |
html_table(fill=TRUE) %>% | |
.[[1]] %>% | |
select(year=1, private=4, public=5) %>% | |
slice(17:61) %>% | |
mutate_at(lucr::from_currency, .vars=c("private", "public")) -> tuition | |
tuition[38, "private"] <- 24818 | |
left_join(tuition, mean_annual_cpi) %>% | |
mutate(adj = mean_cpi / base_mean_cpi) %>% | |
mutate(private_adj = private / adj) %>% | |
mutate(public_adj = public / adj) %>% | |
select(-private, -public, -mean_cpi, -adj) %>% | |
gather(measure, value, -year) %>% | |
mutate(date = as.Date(sprintf("%s-01-01", year))) %>% | |
ggplot(aes(date, value, group=measure)) + | |
geom_line(aes(color=measure)) | |
left_join(tuition, mean_annual_cpi) %>% | |
left_join(annual_wage_adj_2017) %>% | |
filter(!is.na(annual_mean_wage)) %>% | |
mutate(adj = mean_cpi / base_mean_cpi) %>% | |
mutate(private_adj = private / adj) %>% | |
mutate(public_adj = public / adj) %>% | |
select(-private, -public, -mean_cpi, -adj, -annual_mean_wage) %>% | |
gather(measure, value, -year) %>% | |
mutate(date = as.Date(sprintf("%s-01-01", year))) %>% | |
ggplot(aes(date, value, group=measure)) + | |
geom_line(aes(color=measure)) | |
left_join(tuition, mean_annual_cpi) %>% | |
left_join(annual_wage_adj_2017) %>% | |
filter(!is.na(annual_mean_wage)) %>% | |
mutate(adj = mean_cpi / base_mean_cpi) %>% | |
mutate(private_adj = private / adj) %>% | |
mutate(public_adj = public / adj) %>% | |
select(-private, -public, -mean_cpi, -adj, -annual_mean_wage) %>% | |
mutate(date = as.Date(sprintf("%s-01-01", year))) %>% | |
ggplot(aes(annual_mean_wage_adj)) + | |
geom_path(aes(y=private_adj, color="4yr Private College")) + | |
geom_label(aes(y=private_adj, color="4yr Private College", label=year), show.legend = FALSE) + | |
geom_path(aes(y=public_adj, color="4yr Public College")) + | |
geom_label(aes(y=public_adj, color="4yr Public College", label=year), show.legend = FALSE) + | |
scale_x_comma(limits=c(19000,25000), labels=scales::dollar) + | |
scale_y_comma(limits=c(0, 40000), labels=scales::dollar) + | |
scale_color_ipsum(name=NULL) + | |
labs( | |
x="Mean Annual Wage (Production and Nonsupervisory Employees: Retail Trade)", | |
y="Mean Annual Tutition Cost", | |
title="Inflation Adjusted (2017) Earnings vs Tuition: 1979-2015", | |
subtitle="How adfordable is a year of college if you work in an entry-level retail job?", | |
caption="Data: BLS & https://college-education.procon.org/view.resource.php?resourceID=005532" | |
) + | |
theme_ipsum_rc(grid="XY") + | |
theme(legend.position=c(0.9, 0.85)) | |
gas <- read_csv("https://www.eia.gov/totalenergy/data/browser/csv.php?tbl=T09.04") | |
filter(gas, Description == "Unleaded Regular Gasoline, U.S. City Average Retail Price") %>% | |
select(year = YYYYMM, value = Value) %>% | |
mutate(date = anytime::anydate(sprintf("%s01", year))) %>% | |
mutate(year = lubridate::year(date)) %>% | |
mutate(value = as.numeric(value)) %>% | |
filter(!is.na(value)) %>% | |
left_join(mutate(cpi, date=as.Date(date))) %>% | |
mutate(adj = cpi / base_cpi) %>% | |
mutate(value_adj = value / adj) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment