Last active
November 18, 2019 07:59
-
-
Save hrsma2i/9c6514e94cd5e802d9e216aef2bcfe59 to your computer and use it in GitHub Desktop.
# Chainer SGDR, Cosine Annealing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import cos, pi | |
import numpy | |
from chainer.training import extension | |
class CosineAnnealing(extension.Extension): | |
def __init__(self, lr_max, lr_min=0, T_0=1, T_mult=2, | |
optimizer=None): | |
super(CosineAnnealing, self).__init__() | |
self.lr_max = lr_max | |
self.lr_min = lr_min | |
self.T_0 = T_0 | |
self.T_mult = T_mult | |
self.optimizer = optimizer | |
self._t = 0 | |
self._last_lr = None | |
self._last_t_i = None | |
self._last_T_i = None | |
def initialize(self, trainer): | |
optimizer = self._get_optimizer(trainer) | |
if self._last_lr is not None: # resuming from a snapshot | |
self._update_lr(optimizer, self._last_lr) | |
self._update_t_i(optimizer, self._last_t_i) | |
self._update_T_i(optimizer, self._last_T_i) | |
else: | |
self._update_lr(optimizer, self.lr_max) | |
self._update_t_i(optimizer, 1) | |
self._update_T_i(optimizer, self.T_0) | |
def __call__(self, trainer): | |
self._t += 1 | |
_t = self._t # global iteration | |
lr_max = self.lr_max | |
lr_min = self.lr_min | |
T_0 = self.T_0 | |
T_mult = self.T_mult | |
optimizer = self._get_optimizer(trainer) | |
t_cmsm = _t - numpy.cumsum([T_0*(T_mult**i) for i in range(10)]) | |
# cycle | |
i = numpy.where(t_cmsm<0)[0][0] | |
# local iteration (in cycle i, at global iteration t) | |
T_i = T_0 * (T_mult**i) | |
t_i = int(_t - (T_i - T_0)/(T_mult - 1)) + 1 | |
lr = lr_min + (lr_max-lr_min) * 0.5 * (1 + cos(pi*(t_i-1)/T_i)) | |
self._update_lr(optimizer, lr) | |
self._update_t_i(optimizer, t_i) | |
self._update_T_i(optimizer, T_i) | |
def serialize(self, serializer): | |
self._t = serializer('_t', self._t) | |
self._last_lr = serializer('_last_lr', self._last_lr) | |
self._last_t_i = serializer('_last_t_i', self._last_t_i) | |
self._last_T_i = serializer('_last_T_i', self._last_T_i) | |
if isinstance(self._last_lr, numpy.ndarray): | |
self._last_lr = numpy.asscalar(self._last_lr) | |
def _get_optimizer(self, trainer): | |
return self.optimizer or trainer.updater.get_optimizer('main') | |
def _update_lr(self, optimizer, value): | |
setattr(optimizer, 'lr', value) | |
self._last_lr = value | |
def _update_t_i(self, optimizer, value): | |
setattr(optimizer, 't_i', value) | |
self._last_t_i = value | |
def _update_T_i(self, optimizer, value): | |
setattr(optimizer, 'T_i', value) | |
self._last_T_i = value |
Sorry I misread how to use cosine annealing.
Your setting will work.
@nattochaduke Thank you for using.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Great Work!
However, this implementation is limited to training less than 1023 iterations and this is too short.
I believe the '10' that bound the calculation of cummulative sum, in line 43,
t_cmsm = _t - numpy.cumsum([T_0*(T_mult**i) for i in range(10)])
should be a little large (say, 20).