-
-
Save hsiboy/2a442e6b03a241a72e54 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Designed to drive an array of 8 strips of 25 WS2812b RGB LEDs with different display functions | |
0) Off No settings / no brightness control | |
1) Real fire No settings - potentiometer #2 immediately defaults to brightness control | |
2) Color Fire Setttings = goes through the rainbow hues to select the basic flame color | |
3) Rainbow Fire No settings - potentiometer #2 immediately defaults to brightness control | |
4) Barberpole No settings - potentiometer #2 immediately defaults to brightness control | |
5) Rainbow barberpole Setttings = goes through the rainbow hues to select the basic color | |
6) Rainbow No settings - potentiometer #2 immediately defaults to brightness control | |
7) Vertical rainbow No settings - potentiometer #2 immediately defaults to brightness control | |
8) Horizonatl Rainbow No settings - potentiometer #2 immediately defaults to brightness control | |
9) Heartbeat No settings - potentiometer #2 immediately defaults to brightness control | |
10) Color heartbeat Setttings = goes through the rainbow hues to select the basic color | |
11) Lighthouse No settings - potentiometer #2 immediately defaults to brightness control | |
12) Color lighthouse Setttings = goes through the rainbow hues to select the basic color | |
13) Color twinkle No settings - potentiometer #2 immediately defaults to brightness control | |
14) Monochrome Setttings = goes through the rainbow hues to select the basic color | |
15) White No settings - potentiometer #2 immediately defaults to brightness control | |
??) Fire flies (Singke or double spinning around) | |
??) Starry (Twinkles) | |
??) Matchlight (Fire from initial match strike to dying fire) | |
2 potentiometers on A0 and A1 provide control over the different display functions | |
A0 always provide a 'Mode' control defining the general type of animation (Fire, Rainbow, Steady etc...) | |
A1 provides a 'Settings' control that changes how the different 'modes' behave. | |
A timed approach enables 2 (more could be implemented if necessary?) different controls with the same potentiometer. | |
When a new mode is entered, a timer is started to enable the 'Settings' potentiometer to change a functional parameter. | |
When the 'Settings' potentiometer is stable for at least 5 seconds, it's function changes to and stays as a global brightness control. | |
*/ | |
#include <FastLED.h> | |
#define NUM_STRIPS 8 | |
#define NUM_LEDS_PER_STRIP 25 | |
#define FRAMES_PER_SECOND 120 | |
#define MAX_BRIGHTNESS 128 | |
byte brightness = 32; | |
byte settings = 0; | |
int settingstimeout1 = 5000; // Allow as much as 5 seconds to change the settings before locking it in | |
int settingstimeout2 = 6000; // Allow as much as 5 seconds to change the settings before locking it in | |
unsigned long time = 0; | |
#define FRAMES_PER_SECOND 100 | |
CRGB leds[NUM_STRIPS][NUM_LEDS_PER_STRIP]; | |
CRGB darkcolor; | |
CRGB lightcolor; | |
CRGBPalette16 gPalette = RainbowColors_p; | |
#define STARTING_BRIGHTNESS 64 | |
#define FADE_IN_SPEED 32 | |
#define FADE_OUT_SPEED 16 | |
#define DENSITY 2 // Number needs to be very small as main loop is re-entered withou any delays | |
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 }; | |
static byte heat[NUM_STRIPS][NUM_LEDS_PER_STRIP]; // Array of temperature readings at each simulation cell | |
// There are two main parameters you can play with to control the look and | |
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used | |
// in step 3 above). | |
// | |
// COOLING: How much does the air cool as it rises? | |
// Less cooling = taller flames. More cooling = shorter flames. | |
// Default 55, suggested range 20-100 | |
#define COOLING 85 | |
// SPARKING: What chance (out of 255) is there that a new spark will be lit? | |
// Higher chance = more roaring fire. Lower chance = more flickery fire. | |
// Default 120, suggested range 50-200. | |
byte SPARKING = 150; | |
// Fire2012 with programmable Color Palette | |
// | |
// This code is the same fire simulation as the original "Fire2012", | |
// but each heat cell's temperature is translated to color through a FastLED | |
// programmable color palette, instead of through the "HeatColor(...)" function. | |
// | |
// Four different static color palettes are provided here, plus one dynamic one. | |
// | |
// The three static ones are: | |
// 1. the FastLED built-in HeatColors_p -- this is the default, and it looks | |
// pretty much exactly like the original Fire2012. | |
// | |
// To use any of the other palettes below, just "uncomment" the corresponding code. | |
// | |
// 2. a gradient from black to red to yellow to white, which is | |
// visually similar to the HeatColors_p, and helps to illustrate | |
// what the 'heat colors' palette is actually doing, | |
// 3. a similar gradient, but in blue colors rather than red ones, | |
// i.e. from black to blue to aqua to white, which results in | |
// an "icy blue" fire effect, | |
// 4. a simplified three-step gradient, from black to red to white, just to show | |
// that these gradients need not have four components; two or | |
// three are possible, too, even if they don't look quite as nice for fire. | |
// | |
// The dynamic palette shows how you can change the basic 'hue' of the | |
// color palette every time through the loop, producing "rainbow fire". | |
CRGBPalette16 gPal; | |
#define NumberOfModes 16 | |
int val_0 = 0; | |
int prevVal_0 = 128; | |
int mode = 0; | |
int val_1 = 0; | |
int prevVal_1 = 128; | |
void setup() { | |
FastLED.addLeds<NEOPIXEL, 11>(leds[0], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 12>(leds[1], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 13>(leds[2], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 7>(leds[3], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 8>(leds[4], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 9>(leds[5], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 10>(leds[6], NUM_LEDS_PER_STRIP); | |
FastLED.addLeds<NEOPIXEL, 6>(leds[7], NUM_LEDS_PER_STRIP); | |
FastLED.setBrightness(MAX_BRIGHTNESS); | |
FastLED.setDither(0); | |
Serial.begin(9600); // opens serial port, sets data rate to 9600 bps | |
// This first palette is the basic 'black body radiation' colors, | |
// which run from black to red to bright yellow to white. | |
// gPal = HeatColors_p; | |
// These are other ways to set up the color palette for the 'fire'. | |
// First, a gradient from black to red to yellow to white -- similar to HeatColors_p | |
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::DarkOrange, CRGB::DarkOrange, | |
// CRGB::DarkOrange, CRGB::DarkOrange, CRGB::DarkOrange, CRGB::Orange, | |
// CRGB::Orange, CRGB::Orange, CRGB::Orange, CRGB::Yellow, | |
// CRGB::Yellow, CRGB::Yellow, CRGB::Yellow, CRGB::Yellow; // DimGray = 696969 Gray=808080 DarkGray=A9A9A9 LightGray=D3D3D3 | |
// Second, this palette is like the heat colors, but blue/aqua instead of red/yellow | |
// gPal = CRGBPalette16( CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White); | |
// Third, here's a simpler, three-step gradient, from black to red to white | |
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::White); | |
// This is a custom palette to display full brightnees white LEDs only | |
// First, a gradient from black to red to yellow to white -- similar to HeatColors_p | |
// gPal = CRGBPalette16( CRGB::White, CRGB::White, CRGB::White, CRGB::White); | |
} | |
void loop(){ | |
random16_add_entropy( random()); // Add entropy to random number generator; we use a lot of it. | |
CheckPots(); | |
FastLED.setBrightness(MAX_BRIGHTNESS); | |
switch(mode) { | |
case 0: // OFF mode | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
FastLED.show(); // display this frame | |
delay (100); | |
break; | |
case 1: // Standard fire | |
gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::DarkOrange, CRGB::DarkOrange, | |
CRGB::DarkOrange, CRGB::DarkOrange, CRGB::DarkOrange, CRGB::Orange, | |
CRGB::Orange, CRGB::Orange, CRGB::Orange, CRGB::Yellow, | |
CRGB::Yellow, CRGB::Yellow, CRGB::Yellow, CRGB::Yellow); // DimGray = 696969 Gray=808080 DarkGray=A9A9A9 LightGray=D3D3D3 | |
FastLED.setBrightness(brightness/2); | |
Fire2012WithPalette(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 2: // Fire with selectable colors | |
darkcolor = CHSV(settings,255,brightness*3/4); // pure hue, threequarter brightness | |
lightcolor = CHSV(settings,128,brightness); // half 'whitened', full brightness | |
gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB(brightness,brightness,brightness)); | |
FastLED.setBrightness(brightness/2); | |
Fire2012WithPalette(); // run simulation frame, using palette colors | |
break; | |
case 3: // Fire with slowly changing colors | |
static uint8_t hue = 0; | |
hue++; | |
darkcolor = CHSV(hue,255,brightness*3/4); // pure hue, threequarter brightness | |
lightcolor = CHSV(hue,128,brightness); // half 'whitened', full brightness | |
gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB(brightness,brightness,brightness)); | |
FastLED.setBrightness(brightness/2); | |
Fire2012WithPalette(); // run simulation frame, using palette colors | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 4: | |
barberpole(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 5: | |
colorbarberpole(); | |
break; | |
case 6: | |
rainbow(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 7: | |
verrainbow(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 8: | |
horrainbow(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 9: | |
FastLED.setBrightness(brightness/2); | |
heartbeat(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 10: | |
FastLED.setBrightness(brightness/2); | |
colorheartbeat(); | |
break; | |
case 11: | |
lighthouse(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 12: | |
colorlighthouse(); | |
break; | |
case 13: | |
FastLED.setBrightness(brightness); | |
colortwinkle(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
break; | |
case 14: | |
monochrome(); | |
break; | |
default: | |
white(); | |
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here ! | |
} | |
// Add entropy to random number generator; we use a lot of it. | |
// random16_add_entropy( random()); | |
// Fourth, the most sophisticated: this one sets up a new palette every | |
// time through the loop, based on a hue that changes every time. | |
// The palette is a gradient from black, to a dark color based on the hue, | |
// to a light color based on the hue, to white. | |
// | |
// static uint8_t hue = 0; | |
// hue++; | |
// CRGB darkcolor = CHSV(hue,255,192); // pure hue, three-quarters brightness | |
// CRGB lightcolor = CHSV(hue,128,255); // half 'whitened', full brightness | |
// gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB::White); | |
} | |
// Fire2012 by Mark Kriegsman, July 2012 | |
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY | |
// | |
// | |
// This basic one-dimensional 'fire' simulation works roughly as follows: | |
// There's a underlying array of 'heat' cells, that model the temperature | |
// at each point along the line. Every cycle through the simulation, | |
// four steps are performed: | |
// 1) All cells cool down a little bit, losing heat to the air | |
// 2) The heat from each cell drifts 'up' and diffuses a little | |
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom | |
// 4) The heat from each cell is rendered as a color into the leds array | |
// The heat-to-color mapping uses a black-body radiation approximation. | |
// | |
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot). | |
// | |
// This simulation scales it self a bit depending on NUM_LEDS; it should look | |
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking. | |
// | |
// I recommend running this simulation at anywhere from 30-100 frames per second, | |
// meaning an interframe delay of about 10-35 milliseconds. | |
// | |
// Looks best on a high-density LED setup (60+ pixels/meter). | |
// | |
// | |
void Fire2012WithPalette(){ | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { // Step 1. Cool down every cell a little | |
heat[strip][i] = qsub8( heat[strip][i], random8(0, ((COOLING * 10) / NUM_LEDS_PER_STRIP) + 2)); | |
} | |
for( int k= NUM_LEDS_PER_STRIP - 1; k >= 1; k--) { // Step 2. Heat from each cell drifts 'up' and diffuses a little | |
heat[strip][k] = (heat[strip][k-1] + heat[strip][k-2] + heat[strip][k-2] ) / 3; | |
} | |
if( random8() < SPARKING ) { // Step 3. Randomly ignite new 'sparks' of heat near the bottom | |
int y = random8(7); | |
heat[strip][y] = qadd8( heat[strip][y], random8(200,255) ); | |
} | |
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) { // Step 4. Map from heat cells to LED colors | |
byte colorindex = scale8( heat[strip][j], 240); // Scale the heat value from 0-255 down to 0-240 for best results with color palettes. | |
leds[strip][j] = ColorFromPalette( gPal, colorindex); | |
} | |
} | |
FastLED.show(); // display this frame | |
delay(1000 / FRAMES_PER_SECOND); | |
} | |
void barberpole(){ | |
for (int rotate = 0; rotate < NUM_STRIPS; rotate++){ | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
int diag = strip+i+rotate; | |
diag = diag % 8; | |
switch(strip){ | |
case 0: | |
leds[diag][i] = CRGB(brightness,0,0); | |
break; | |
case 1: | |
leds[diag][i] = CRGB(brightness,0,0); | |
break; | |
case 2: | |
leds[diag][i] = CRGB(brightness,brightness,brightness); | |
break; | |
case 3: | |
leds[diag][i] = CRGB(brightness,brightness,brightness); | |
break; | |
case 4: | |
leds[diag][i] = CRGB(0,0,brightness); | |
break; | |
case 5: | |
leds[diag][i] = CRGB(0,0,brightness); | |
break; | |
case 6: | |
leds[diag][i] = CRGB(brightness,brightness,brightness); | |
break; | |
case 7: | |
leds[diag][i] = CRGB(brightness,brightness,brightness); | |
break; | |
} | |
} | |
} | |
FastLED.show(); // display this frame | |
delay (200); | |
CheckPots(); // Added to prevent brightness setting lag. | |
} | |
} | |
void colorbarberpole(){ | |
for (int rotate = 0; rotate < NUM_STRIPS; rotate++){ | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
byte settings2 = settings + 85; | |
byte settings3 = settings + 170; | |
int diag = strip+i+rotate; | |
diag = diag % 8; | |
switch(strip){ | |
case 0: | |
leds[diag][i] = CHSV(settings2,255,brightness); | |
break; | |
case 1: | |
leds[diag][i] = CHSV(settings2,255,brightness); | |
break; | |
case 2: | |
leds[diag][i] = CHSV(settings,255,brightness); | |
break; | |
case 3: | |
leds[diag][i] = CHSV(settings,255,brightness); | |
break; | |
case 4: | |
leds[diag][i] = CHSV(settings3,255,brightness); | |
break; | |
case 5: | |
leds[diag][i] = CHSV(settings3,255,brightness); | |
break; | |
case 6: | |
leds[diag][i] = CHSV(settings,255,brightness); | |
break; | |
case 7: | |
leds[diag][i] = CHSV(settings,255,brightness); | |
break; | |
} | |
} | |
} | |
FastLED.show(); // display this frame | |
delay (200); | |
CheckPots(); // Added to prevent brightness setting lag. | |
} | |
} | |
void rainbow(){ | |
static byte rainbow_color = 0; | |
byte rainbow_brightness = constrain(brightness,96,255); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness); | |
} | |
} | |
FastLED.show(); | |
FastLED.delay(10); | |
rainbow_color++; | |
} | |
void verrainbow(){ | |
static byte rainbow_start = 0; | |
static byte rainbow_color = 0; | |
byte rainbow_brightness = constrain(brightness,96,255); | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness); | |
} | |
rainbow_color+=10; | |
} | |
FastLED.show(); | |
FastLED.delay(3); | |
rainbow_color = rainbow_start++; | |
} | |
void horrainbow(){ | |
static byte rainbow_start = 0; | |
static byte rainbow_color = 0; | |
byte rainbow_brightness = constrain(brightness,96,255); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness); | |
} | |
rainbow_color+=32; | |
} | |
FastLED.show(); | |
FastLED.delay(10); | |
rainbow_color = rainbow_start++; | |
} | |
void heartbeat(){ | |
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
for( int i = k; i >=0; i--) { | |
int j = i-k; | |
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255)); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
leds[strip][i] = CRGB(result,result,result); | |
} | |
} | |
FastLED.show(); | |
delay(30); | |
} | |
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
for( int i = NUM_LEDS_PER_STRIP-1; i >= k; i--) { | |
int j = i-k; | |
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255)); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
leds[strip][i] = CRGB(result,result,result); | |
} | |
} | |
FastLED.show(); | |
delay(30); | |
} | |
delay(1000); | |
} | |
void colorheartbeat(){ | |
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
for( int i = k; i >=0; i--) { | |
int j = i-k; | |
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255)); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
leds[strip][i] = CHSV(settings,255,result); | |
} | |
} | |
FastLED.show(); | |
delay(30); | |
} | |
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) { | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
for( int i = NUM_LEDS_PER_STRIP-1; i >= k; i--) { | |
int j = i-k; | |
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255)); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
leds[strip][i] = CHSV(settings,255,result); | |
} | |
} | |
FastLED.show(); | |
delay(30); | |
} | |
delay(1000); | |
} | |
void lighthouse(){ | |
static int pos = 0; // position of the "fraction-based bar" | |
static byte hue = 0; // color for Fractional Bar | |
int width = 2; // width of each light bar, in whole pixels | |
int InterframeDelay = 20; // ms | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { // clear the pixel buffer | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
int pixel = pos / 16; // convert from pos to raw pixel number | |
uint8_t frac = pos & 0x0F; // extract the 'factional' part of the position | |
uint8_t bright; | |
for( int n = 0; n <= width; n++) { | |
if( n == 0) bright = brightness - brightness*frac/16; // first pixel in the bar | |
else if( n == width ) bright = brightness*frac/16; // last pixel in the bar | |
else bright = brightness; // middle pixels... if any... | |
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) { | |
leds[pixel][j] += CRGB(bright,bright,bright); | |
} | |
pixel++; | |
if( pixel == NUM_STRIPS){ | |
pixel = 0; // wrap around | |
} | |
} | |
FastLED.show(); | |
FastLED.delay(InterframeDelay); | |
pos++; // Update by 1/16th pixel every loop | |
if( pos >= (NUM_STRIPS * 16)) pos -= (NUM_STRIPS * 16); // wrap around if past the end | |
} | |
void colorlighthouse(){ | |
static int pos = 0; // position of the "fraction-based bar" | |
static byte hue = 0; // color for Fractional Bar | |
int width = 2; // width of each light bar, in whole pixels | |
int InterframeDelay = 10; // ms | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { // clear the pixel buffer | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) ); | |
} | |
int pixel = pos / 16; // convert from pos to raw pixel number | |
uint8_t frac = pos & 0x0F; // extract the 'factional' part of the position | |
uint8_t bright; | |
for( int n = 0; n <= width; n++) { | |
if( n == 0) bright = brightness - brightness*frac/16; // first pixel in the bar | |
else if( n == width ) bright = brightness*frac/16; // last pixel in the bar | |
else bright = brightness; // middle pixels... if any... | |
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) { | |
leds[pixel][j] += CHSV( settings, 255, bright); | |
} | |
pixel++; | |
if( pixel == NUM_STRIPS){ | |
pixel = 0; // wrap around | |
} | |
} | |
FastLED.show(); | |
FastLED.delay(InterframeDelay); | |
pos++; // Update by 1/16th pixel every loop | |
if( pos >= (NUM_STRIPS * 16)) pos -= (NUM_STRIPS * 16); // wrap around if past the end | |
} | |
void monochrome(){ | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
leds[strip][i] = CHSV(settings, 255, brightness); | |
} | |
} | |
FastLED.show(); // display this frame | |
delay (100); | |
} | |
void colortwinkle(){ | |
brightenOrDarkenEachPixel( FADE_IN_SPEED, FADE_OUT_SPEED); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
if( random8() < DENSITY ) { | |
if( !leds[strip][i]) { | |
leds[strip][i] = ColorFromPalette( gPalette, random8(), STARTING_BRIGHTNESS, NOBLEND); | |
setPixelDirection(i, strip, GETTING_BRIGHTER); | |
} | |
} | |
} | |
} | |
FastLED.show(); | |
FastLED.delay(20); | |
} | |
void brightenOrDarkenEachPixel( fract8 fadeUpAmount, fract8 fadeDownAmount) | |
{ | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
if( getPixelDirection(i,strip) == GETTING_DARKER) { | |
leds[strip][i] = leds[strip][i].nscale8(255 - fadeDownAmount); | |
} | |
else { | |
CRGB incrementalColor = leds[strip][i]; | |
leds[strip][i] = leds[strip][i] + incrementalColor.nscale8(fadeUpAmount); | |
if( leds[strip][i].r == 255 || leds[strip][i].g == 255 || leds[strip][i].b == 255) { | |
setPixelDirection(i, strip, GETTING_DARKER); | |
} | |
} | |
} | |
} | |
} | |
uint8_t directionFlags[NUM_LEDS_PER_STRIP]; | |
bool getPixelDirection( uint8_t i, uint8_t strip) { | |
uint8_t index = i; | |
uint8_t bitNum = strip; | |
return bitRead( directionFlags[index], bitNum); | |
} | |
void setPixelDirection( uint8_t i, uint8_t strip, bool dir) { | |
uint8_t index = i; | |
uint8_t bitNum = strip; | |
bitWrite( directionFlags[index], bitNum, dir); | |
} | |
void white(){ | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { | |
leds[strip][i] = CRGB(brightness,brightness,brightness); | |
} | |
} | |
FastLED.show(); // display this frame | |
delay (100); | |
} | |
void CheckPots(){ | |
val_0 = analogRead(0); | |
val_1 = analogRead(1); | |
if (abs(val_0-prevVal_0) >= 8){ // If potentiometer is tweaked sufficiently to change settings | |
// pot_status(); | |
if (millis() > (time + 5000)){ // Give as much as 5 seconds to change settings before locking it in. | |
brightness = map(val_0, 0, 1024, 0, 256); | |
prevVal_0 = val_0; | |
} | |
else { | |
time = millis(); // RE-start timer each time we enter to change settings | |
settings = map(val_0, 0, 1024, 0, 256); | |
brightness = 128; // Temporarily set brightness to 50% | |
prevVal_0 = val_0; | |
} | |
} | |
if (abs(val_1-prevVal_1) >= 8){ // If potentiometer is tweaked sufficiently to change modes | |
// pot_status(); | |
time = millis(); // Start timer | |
mode = map(val_1, 0, 1024, 0, NumberOfModes); | |
prevVal_1 = val_1; | |
} | |
if (millis() > (time + settingstimeout1) && millis() < (time + settingstimeout2)){ // If we just got out of the settings period... | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0)); | |
} | |
FastLED.show(); // Indicate it by flashing off the lamp 1/4 second | |
delay (250); | |
for( int strip = 0; strip < NUM_STRIPS; strip++) { | |
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(brightness, brightness, brightness)); | |
} | |
FastLED.show(); // Indicate it by flashing on the lamp 1/4 second | |
delay (250); | |
time = millis() - settingstimeout2; // Make sure we don't flash again ! | |
} | |
} | |
void pot_status(){ | |
Serial.print("Value of pot 0 is: "); | |
Serial.print(val_0); | |
Serial.print(" Value of pot 1 is: "); | |
Serial.print(val_1); | |
Serial.print(" Value of mode is: "); | |
Serial.print(mode); | |
Serial.print(" Value of settings is: "); | |
Serial.print(settings); | |
Serial.print(" Value of brightness is: "); | |
Serial.println(brightness); | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment