Created
November 11, 2017 07:35
-
-
Save hsk/8dce3d7f5720e77a30a58b60d0fb43a3 to your computer and use it in GitHub Desktop.
An algorithm for type-checking dependent types
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% An algorithm for type-checking dependent types | |
:- op(650,xfy,$). | |
:- op(900,xfy,[=>,->,⇓]). | |
:- op(920,xfx,[⊢]). | |
failwith(A,L) :- format(A,L),halt. | |
% Syntax | |
id(Id) :- atom(Id). % Identify | |
exp(Id) :- id(Id). % Variable | |
exp(E$E1) :- exp(E),exp(E1). % Application | |
exp(λ(Id->E)) :- id(Id),exp(E). % Lambda Abstraction | |
exp(let(Id=E:E1);E2) :- id(Id),exp(E),exp(E1),exp(E2). % Let Expression | |
exp(π(Id:E->E1)) :- id(Id),exp(E),exp(E1). % Pi Abstraction | |
exp(*). % Type | |
val(p(I)) :- integer(I). % Generalization | |
val(V1$V2) :- val(V1),val(V2). % Application | |
val(*). % Type | |
val(C/E) :- env(C),exp(E). % Closure | |
env(C) :- maplist(env1, C). % Environment | |
env1(Id=V) :- id(Id), val(V). | |
% Evaluation | |
app(C/λ(X->E)$V = E_) :- !, [X=V|C] ⊢ E ⇓ E_. | |
app( U$V = U$V). | |
U$V ⇓ E_ :- U ⇓ U_, V ⇓ V_, app(U_$V_ = E_). | |
C/E ⇓ E_ :- C ⊢ E ⇓ E_. | |
V ⇓ V. | |
C ⊢ X ⇓ E :- atom(X), member(X=E,C). | |
C ⊢ E1$E2 ⇓ E :- C ⊢ E1 ⇓ E1_, C ⊢ E2 ⇓ E2_, app(E1_$E2_ = E). | |
C ⊢ (let(X=E1:_);E3)⇓ E :- C ⊢ E1 ⇓ E1_, [X=E1_|C] ⊢ E3 ⇓ E. | |
_ ⊢ * ⇓ * . | |
C ⊢ E ⇓ C/E. | |
% Equality | |
K ⊢ U = U2 :- U ⇓ U_, U2 ⇓ U2_, K ⊢ U_ == U2_. | |
_ ⊢ * == * . | |
K ⊢ T$W == T2$W2 :- K ⊢ T = T2, K ⊢ W = W2. | |
_ ⊢ p(K1) == p(K1). | |
K ⊢ C/λ(X->E) == C2/λ(X2->E2) :- K1 is K+1, | |
K1 ⊢ [X=p(K)|C]/E = [X2=p(K)|C2]/E2. | |
K ⊢ C/π(X:A->B) == C2/π(X2:A2->B2) :- K1 is K+1,K ⊢ C/A = C2/A2, | |
K1 ⊢ [X=p(K)|C]/B = [X2=p(K)|C2]/B2. | |
% Type checking | |
P/Γ ⊢ λ(X->N) => V :- V ⇓ C/π(Y:A->B), length(P,K), | |
[X=p(K)|P]/[X:C/A|Γ] ⊢ N => [Y=p(K)|C]/B. | |
P/Γ ⊢ π(X:A->B) => V :- V ⇓ *, P/Γ ⊢ A => *, length(P,K), | |
[X=p(K)|P]/[X:P/A|Γ] ⊢ B => * . | |
P/Γ ⊢ (let(X=E:T);E3) => V :- P/Γ ⊢ T => *, P ⊢ E ⇓ E_, P ⊢ T ⇓ T_, | |
[X=E_|P]/[X:T_|Γ] ⊢ E3 => V. | |
P/Γ ⊢ E => V :- P/Γ⊢E->T, length(P,K), K ⊢ T = V. | |
% Type inference | |
_/Γ ⊢ Id -> T :- atom(Id), member(Id:T,Γ). | |
P/Γ ⊢ E1$E2 -> [X=P/E2|C]/B :- P/Γ ⊢ E1 -> T1, T1 ⇓ C/π(X:A->B), | |
P/Γ ⊢ E2 => C/A. | |
_/_ ⊢ * -> * . | |
test(M : A) :- exp(M), exp(A), []/[] ⊢ A => *, []/[] ⊢ M => []/A. | |
:- test(λ(a->λ(x->x)):π(a : * -> π(x : a -> a))). | |
:- halt. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment