Created
December 8, 2021 00:51
-
-
Save hsleonis/c8b8ce3e9d5d7318b53bfe0dd2a36a82 to your computer and use it in GitHub Desktop.
LeNet - Deep Learning Neural Network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
LeNet - Deep Learning Neural Network | |
""" | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.layers import Conv2D, AveragePooling2D, Dense, Flatten | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.datasets import mnist | |
from tensorflow.keras.utils import to_categorical | |
import matplotlib.pyplot as plt | |
# Load the MNIST dataset using the Keras library: | |
(x_train , y_train), (x_test, y_test) = mnist.load_data() | |
# Split dataset into training and testing, padding and normalizing images: | |
x_train = np.pad(x_train,((0,0),(2,2),(2,2))) # padding | |
x_test = np.pad(x_test,((0,0),(2,2),(2,2))) | |
x_train = x_train/255.0 # Normalizing the values | |
x_test = x_test/255.0 | |
y_train = to_categorical(y_train,10) # converting labels into one-hot-encoded vectors | |
y_test = to_categorical(y_test,10) | |
# Explore Dataset: | |
plt.imshow(x_train[0], cmap='gray') | |
plt.show() | |
# Expand dimensions of dataset, because LeNet expects images of size 32x32x1 instead of 32x32: | |
x_train = np.expand_dims(x_train, 3) | |
x_test = np.expand_dims(x_test, 3) | |
# LeNet Model: | |
lenet = Sequential(name="LeNet-5") | |
lenet.add(Conv2D(6,(5,5),strides=(1,1), activation='tanh', input_shape=(32,32,1), name='C1')) # C1 | |
lenet.add(AveragePooling2D(name='S2')) # S2 | |
lenet.add(Conv2D(16,(5,5),strides=(1,1), activation='tanh', name='C3')) # C3 | |
lenet.add(AveragePooling2D(name='S4')) # S4 | |
lenet.add(Flatten()) | |
lenet.add(Dense(120,activation='tanh', name='FC5')) # FC5 | |
lenet.add(Dense(84,activation='tanh', name='FC6')) # FC6 | |
lenet.add(Dense(10,activation='softmax', name='Output')) # FC7 | |
# Compile model: | |
lenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) | |
# Model preview: | |
lenet.summary() | |
# Train model: | |
lenet.fit(x_train, y_train, epochs=10, batch_size=32) | |
# Evaluate model's performance by passing the test dataset: | |
_, acc = lenet.evaluate(x_test, y_test) | |
"""We aquire 98.58% accuracy.""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment