Skip to content

Instantly share code, notes, and snippets.

@htoyryla
Created August 6, 2022 08:21
Show Gist options
  • Save htoyryla/23bbce2053cb673d3ba53832960dc5bd to your computer and use it in GitHub Desktop.
Save htoyryla/23bbce2053cb673d3ba53832960dc5bd to your computer and use it in GitHub Desktop.
Basic disco diffusion with masks, command line only, config read from ini file
# %%
# !! {"metadata":{
# !! "id": "view-in-github",
# !! "colab_type": "text"
# !! }}
"""
<a href="https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
"""
# %%
# !! {"metadata":{
# !! "id": "TitleTop"
# !! }}
"""
# Disco Diffusion v5.4 - Now with Warp
Disco Diffusion - http://discodiffusion.com/ , https://github.com/alembics/disco-diffusion
In case of confusion, Disco is the name of this notebook edit. The diffusion model in use is Katherine Crowson's fine-tuned 512x512 model
For issues, join the [Disco Diffusion Discord](https://discord.gg/msEZBy4HxA) or message us on twitter at [@somnai_dreams](https://twitter.com/somnai_dreams) or [@gandamu](https://twitter.com/gandamu_ml)
"""
# %%
# !! {"metadata":{
# !! "id": "CreditsChTop"
# !! }}
"""
### Credits & Changelog ⬇️
"""
# %%
# !! {"metadata":{
# !! "id": "Credits"
# !! }}
"""
#### Credits
Original notebook by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses either OpenAI's 256x256 unconditional ImageNet or Katherine Crowson's fine-tuned 512x512 diffusion model (https://github.com/openai/guided-diffusion), together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images.
Modified by Daniel Russell (https://github.com/russelldc, https://twitter.com/danielrussruss) to include (hopefully) optimal params for quick generations in 15-100 timesteps rather than 1000, as well as more robust augmentations.
Further improvements from Dango233 and nshepperd helped improve the quality of diffusion in general, and especially so for shorter runs like this notebook aims to achieve.
Vark added code to load in multiple Clip models at once, which all prompts are evaluated against, which may greatly improve accuracy.
The latest zoom, pan, rotation, and keyframes features were taken from Chigozie Nri's VQGAN Zoom Notebook (https://github.com/chigozienri, https://twitter.com/chigozienri)
Advanced DangoCutn Cutout method is also from Dango223.
--
Disco:
Somnai (https://twitter.com/Somnai_dreams) added Diffusion Animation techniques, QoL improvements and various implementations of tech and techniques, mostly listed in the changelog below.
3D animation implementation added by Adam Letts (https://twitter.com/gandamu_ml) in collaboration with Somnai. Creation of disco.py and ongoing maintenance.
Turbo feature by Chris Allen (https://twitter.com/zippy731)
Improvements to ability to run on local systems, Windows support, and dependency installation by HostsServer (https://twitter.com/HostsServer)
VR Mode by Tom Mason (https://twitter.com/nin_artificial)
Horizontal and Vertical symmetry functionality by nshepperd. Symmetry transformation_steps by huemin (https://twitter.com/huemin_art). Symmetry integration into Disco Diffusion by Dmitrii Tochilkin (https://twitter.com/cut_pow).
Warp and custom model support by Alex Spirin (https://twitter.com/devdef).
"""
# %%
# !! {"metadata":{
# !! "id": "LicenseTop"
# !! }}
"""
#### License
"""
# %%
# !! {"metadata":{
# !! "id": "License"
# !! }}
"""
Licensed under the MIT License
Copyright (c) 2021 Katherine Crowson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--
MIT License
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
--
Licensed under the MIT License
Copyright (c) 2021 Maxwell Ingham
Copyright (c) 2022 Adam Letts
Copyright (c) 2022 Alex Spirin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--
flow-related - https://github.com/NVIDIA/flownet2-pytorch/blob/master/LICENSE
--
Copyright 2017 NVIDIA CORPORATION
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
# %%
# !! {"metadata":{
# !! "id": "ChangelogTop"
# !! }}
"""
#### Changelog
"""
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "Changelog"
# !! }}
#@title <- View Changelog
skip_for_run_all = True #@param {type: 'boolean'}
if skip_for_run_all == False:
print(
'''
v1 Update: Oct 29th 2021 - Somnai
QoL improvements added by Somnai (@somnai_dreams), including user friendly UI, settings+prompt saving and improved google drive folder organization.
v1.1 Update: Nov 13th 2021 - Somnai
Now includes sizing options, intermediate saves and fixed image prompts and perlin inits. unexposed batch option since it doesn't work
v2 Update: Nov 22nd 2021 - Somnai
Initial addition of Katherine Crowson's Secondary Model Method (https://colab.research.google.com/drive/1mpkrhOjoyzPeSWy2r7T8EYRaU7amYOOi#scrollTo=X5gODNAMEUCR)
Noticed settings were saving with the wrong name so corrected it. Let me know if you preferred the old scheme.
v3 Update: Dec 24th 2021 - Somnai
Implemented Dango's advanced cutout method
Added SLIP models, thanks to NeuralDivergent
Fixed issue with NaNs resulting in black images, with massive help and testing from @Softology
Perlin now changes properly within batches (not sure where this perlin_regen code came from originally, but thank you)
v4 Update: Jan 2022 - Somnai
Implemented Diffusion Zooming
Added Chigozie keyframing
Made a bunch of edits to processes
v4.1 Update: Jan 14th 2022 - Somnai
Added video input mode
Added license that somehow went missing
Added improved prompt keyframing, fixed image_prompts and multiple prompts
Improved UI
Significant under the hood cleanup and improvement
Refined defaults for each mode
Added latent-diffusion SuperRes for sharpening
Added resume run mode
v4.9 Update: Feb 5th 2022 - gandamu / Adam Letts
Added 3D
Added brightness corrections to prevent animation from steadily going dark over time
v4.91 Update: Feb 19th 2022 - gandamu / Adam Letts
Cleaned up 3D implementation and made associated args accessible via Colab UI elements
v4.92 Update: Feb 20th 2022 - gandamu / Adam Letts
Separated transform code
v5.01 Update: Mar 10th 2022 - gandamu / Adam Letts
IPython magic commands replaced by Python code
v5.1 Update: Mar 30th 2022 - zippy / Chris Allen and gandamu / Adam Letts
Integrated Turbo+Smooth features from Disco Diffusion Turbo -- just the implementation, without its defaults.
Implemented resume of turbo animations in such a way that it's now possible to resume from different batch folders and batch numbers.
3D rotation parameter units are now degrees (rather than radians)
Corrected name collision in sampling_mode (now diffusion_sampling_mode for plms/ddim, and sampling_mode for 3D transform sampling)
Added video_init_seed_continuity option to make init video animations more continuous
v5.1 Update: Apr 4th 2022 - MSFTserver aka HostsServer
Removed pytorch3d from needing to be compiled with a lite version specifically made for Disco Diffusion
Remove Super Resolution
Remove SLIP Models
Update for crossplatform support
v5.2 Update: Apr 10th 2022 - nin_artificial / Tom Mason
VR Mode
v5.3 Update: Jun 10th 2022 - nshepperd, huemin, cut_pow / Dmitrii Tochilkin
Horizontal and Vertical symmetry
Addition of ViT-L/14@336px model (requires high VRAM)
v5.4 Update: Jun 14th 2022 - devdef / Alex Spirin, Alex's Warp changes integrated into DD main by gandamu / Adam Letts
Warp mode - for smooth/continuous video input results leveraging optical flow estimation and frame blending
Custom models support
'''
)
# %%
# !! {"metadata":{
# !! "id": "TutorialTop"
# !! }}
"""
# Tutorial
"""
# %%
# !! {"metadata":{
# !! "id": "DiffusionSet"
# !! }}
"""
**Diffusion settings (Defaults are heavily outdated)**
---
Disco Diffusion is complex, and continually evolving with new features. The most current documentation on on Disco Diffusion settings can be found in the unofficial guidebook:
[Zippy's Disco Diffusion Cheatsheet](https://docs.google.com/document/d/1l8s7uS2dGqjztYSjPpzlmXLjl5PM3IGkRWI3IiCuK7g/edit)
We also encourage users to join the [Disco Diffusion User Discord](https://discord.gg/XGZrFFCRfN) to learn from the active user community.
This section below is outdated as of v2
Setting | Description | Default
--- | --- | ---
**Your vision:**
`text_prompts` | A description of what you'd like the machine to generate. Think of it like writing the caption below your image on a website. | N/A
`image_prompts` | Think of these images more as a description of their contents. | N/A
**Image quality:**
`clip_guidance_scale` | Controls how much the image should look like the prompt. | 1000
`tv_scale` | Controls the smoothness of the final output. | 150
`range_scale` | Controls how far out of range RGB values are allowed to be. | 150
`sat_scale` | Controls how much saturation is allowed. From nshepperd's JAX notebook. | 0
`cutn` | Controls how many crops to take from the image. | 16
`cutn_batches` | Accumulate CLIP gradient from multiple batches of cuts. | 2
**Init settings:**
`init_image` | URL or local path | None
`init_scale` | This enhances the effect of the init image, a good value is 1000 | 0
`skip_steps` | Controls the starting point along the diffusion timesteps | 0
`perlin_init` | Option to start with random perlin noise | False
`perlin_mode` | ('gray', 'color') | 'mixed'
**Advanced:**
`skip_augs` | Controls whether to skip torchvision augmentations | False
`randomize_class` | Controls whether the imagenet class is randomly changed each iteration | True
`clip_denoised` | Determines whether CLIP discriminates a noisy or denoised image | False
`clamp_grad` | Experimental: Using adaptive clip grad in the cond_fn | True
`seed` | Choose a random seed and print it at end of run for reproduction | random_seed
`fuzzy_prompt` | Controls whether to add multiple noisy prompts to the prompt losses | False
`rand_mag` | Controls the magnitude of the random noise | 0.1
`eta` | DDIM hyperparameter | 0.5
`use_vertical_symmetry` | Enforce symmetry over x axis of the image on [`tr_st`*`steps` for `tr_st` in `transformation_steps`] steps of the diffusion process | False
`use_horizontal_symmetry` | Enforce symmetry over y axis of the image on [`tr_st`*`steps` for `tr_st` in `transformation_steps`] steps of the diffusion process | False
`transformation_steps` | Steps (expressed in percentages) in which the symmetry is enforced | [0.01]
`video_init_flow_warp` | Flow warp enabled | True
`video_init_flow_blend` | 0 - you get raw input, 1 - you get warped diffused previous frame | 0.999
`video_init_check_consistency` | TBD check forward-backward flow consistency (uncheck unless there are too many warping artifacts) | False
..
**Model settings**
---
Setting | Description | Default
--- | --- | ---
**Diffusion:**
`timestep_respacing` | Modify this value to decrease the number of timesteps. | ddim100
`diffusion_steps` || 1000
**Diffusion:**
`clip_models` | Models of CLIP to load. Typically the more, the better but they all come at a hefty VRAM cost. | ViT-B/32, ViT-B/16, RN50x4
"""
# %%
# !! {"metadata":{
# !! "id": "SetupTop"
# !! }}
"""
# 1. Set Up
"""
from configparser import SafeConfigParser
import sys
conf = SafeConfigParser()
conf.read(sys.argv[1])
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "CheckGPU"
# !! }}
#@title 1.1 Check GPU Status
'''
import subprocess
simple_nvidia_smi_display = False#@param {type:"boolean"}
if simple_nvidia_smi_display:
#!nvidia-smi
nvidiasmi_output = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(nvidiasmi_output)
else:
#!nvidia-smi -i 0 -e 0
nvidiasmi_output = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(nvidiasmi_output)
nvidiasmi_ecc_note = subprocess.run(['nvidia-smi', '-i', '0', '-e', '0'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(nvidiasmi_ecc_note)
'''
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "PrepFolders"
# !! }}
#@title 1.2 Prepare Folders
import subprocess, os, sys, ipykernel
def gitclone(url, targetdir=None):
if targetdir:
res = subprocess.run(['git', 'clone', url, targetdir], stdout=subprocess.PIPE).stdout.decode('utf-8')
else:
res = subprocess.run(['git', 'clone', url], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(res)
def pipi(modulestr):
res = subprocess.run(['pip', 'install', modulestr], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(res)
def pipie(modulestr):
res = subprocess.run(['git', 'install', '-e', modulestr], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(res)
def wget(url, outputdir):
res = subprocess.run(['wget', url, '-P', f'{outputdir}'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(res)
try:
from google.colab import drive
print("Google Colab detected. Using Google Drive.")
is_colab = True
#@markdown If you connect your Google Drive, you can save the final image of each run on your drive.
google_drive = True #@param {type:"boolean"}
#@markdown Click here if you'd like to save the diffusion model checkpoint file to (and/or load from) your Google Drive:
save_models_to_google_drive = True #@param {type:"boolean"}
except:
is_colab = False
google_drive = False
save_models_to_google_drive = False
print("Google Colab not detected.")
if is_colab:
if google_drive is True:
drive.mount('/content/drive')
root_path = '/content/drive/MyDrive/AI/Disco_Diffusion'
else:
root_path = '/content'
else:
root_path = os.getcwd()
import os
def createPath(filepath):
os.makedirs(filepath, exist_ok=True)
initDirPath = f'{root_path}/init_images'
createPath(initDirPath)
outDirPath = f'{root_path}/images_out'
createPath(outDirPath)
if is_colab:
if google_drive and not save_models_to_google_drive or not google_drive:
model_path = '/content/models'
createPath(model_path)
if google_drive and save_models_to_google_drive:
model_path = f'{root_path}/models'
createPath(model_path)
else:
model_path = f'{root_path}/models'
createPath(model_path)
# libraries = f'{root_path}/libraries'
# createPath(libraries)
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "InstallDeps"
# !! }}
#@title ### 1.3 Install, import dependencies and set up runtime devices
import pathlib, shutil, os, sys
# There are some reports that with a T4 or V100 on Colab, downgrading to a previous version of PyTorch may be necessary.
# .. but there are also reports that downgrading breaks them! If you're facing issues, you may want to try uncommenting and running this code.
# nvidiasmi_output = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE).stdout.decode('utf-8')
# cards_requiring_downgrade = ["Tesla T4", "V100"]
# if is_colab:
# if any(cardstr in nvidiasmi_output for cardstr in cards_requiring_downgrade):
# print("Downgrading pytorch. This can take a couple minutes ...")
# downgrade_pytorch_result = subprocess.run(['pip', 'install', 'torch==1.10.2', 'torchvision==0.11.3', '-q'], stdout=subprocess.PIPE).stdout.decode('utf-8')
# print("pytorch downgraded.")
#@markdown Check this if you want to use CPU
useCPU = False #@param {type:"boolean"}
if not is_colab:
# If running locally, there's a good chance your env will need this in order to not crash upon np.matmul() or similar operations.
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
PROJECT_DIR = os.path.abspath(os.getcwd())
USE_ADABINS = True
if is_colab:
if not google_drive:
root_path = f'/content'
model_path = '/content/models'
else:
root_path = os.getcwd()
model_path = f'{root_path}/models'
multipip_res = subprocess.run(['pip', 'install', 'lpips', 'datetime', 'timm', 'ftfy', 'einops', 'pytorch-lightning', 'omegaconf'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(multipip_res)
if is_colab:
subprocess.run(['apt', 'install', 'imagemagick'], stdout=subprocess.PIPE).stdout.decode('utf-8')
try:
from CLIP import clip
except:
if not os.path.exists("CLIP"):
gitclone("https://github.com/openai/CLIP")
sys.path.append(f'{PROJECT_DIR}/CLIP')
try:
from guided_diffusion.script_util import create_model_and_diffusion
except:
if not os.path.exists("guided-diffusion"):
gitclone("https://github.com/kostarion/guided-diffusion")
sys.path.append(f'{PROJECT_DIR}/guided-diffusion')
try:
from resize_right import resize
except:
if not os.path.exists("ResizeRight"):
gitclone("https://github.com/assafshocher/ResizeRight.git")
sys.path.append(f'{PROJECT_DIR}/ResizeRight')
try:
import py3d_tools
except:
if not os.path.exists('pytorch3d-lite'):
gitclone("https://github.com/MSFTserver/pytorch3d-lite.git")
sys.path.append(f'{PROJECT_DIR}/pytorch3d-lite')
try:
from midas.dpt_depth import DPTDepthModel
except:
if not os.path.exists('MiDaS'):
gitclone("https://github.com/isl-org/MiDaS.git")
if not os.path.exists('MiDaS/midas_utils.py'):
shutil.move('MiDaS/utils.py', 'MiDaS/midas_utils.py')
if not os.path.exists(f'{model_path}/dpt_large-midas-2f21e586.pt'):
wget("https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", model_path)
sys.path.append(f'{PROJECT_DIR}/MiDaS')
try:
sys.path.append(PROJECT_DIR)
import disco_xform_utils as dxf
except:
if not os.path.exists("disco-diffusion"):
gitclone("https://github.com/alembics/disco-diffusion.git")
if not os.path.exists('disco_xform_utils.py'):
shutil.move('disco-diffusion/disco_xform_utils.py', 'disco_xform_utils.py')
sys.path.append(PROJECT_DIR)
import torch
from dataclasses import dataclass
from functools import partial
import cv2
import pandas as pd
import gc
import io
import math
import timm
from IPython import display
import lpips
from PIL import Image, ImageOps
import requests
from glob import glob
import json
from types import SimpleNamespace
from torch import nn
from torch.nn import functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from tqdm.notebook import tqdm
from CLIP import clip
from resize_right import resize
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import random
from ipywidgets import Output
import hashlib
from functools import partial
if is_colab:
os.chdir('/content')
from google.colab import files
else:
os.chdir(f'{PROJECT_DIR}')
from IPython.display import Image as ipyimg
from numpy import asarray
from einops import rearrange, repeat
import torch, torchvision
import time
from omegaconf import OmegaConf
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# AdaBins stuff
if USE_ADABINS:
try:
from infer import InferenceHelper
except:
if not os.path.exists("AdaBins"):
gitclone("https://github.com/shariqfarooq123/AdaBins.git")
if not os.path.exists(f'{PROJECT_DIR}/pretrained/AdaBins_nyu.pt'):
createPath(f'{PROJECT_DIR}/pretrained')
wget("https://cloudflare-ipfs.com/ipfs/Qmd2mMnDLWePKmgfS8m6ntAg4nhV5VkUyAydYBp8cWWeB7/AdaBins_nyu.pt", f'{PROJECT_DIR}/pretrained')
sys.path.append(f'{PROJECT_DIR}/AdaBins')
from infer import InferenceHelper
MAX_ADABINS_AREA = 500000
import torch
DEVICE = torch.device('cuda:0' if (torch.cuda.is_available() and not useCPU) else 'cpu')
print('Using device:', DEVICE)
device = DEVICE # At least one of the modules expects this name..
if not useCPU:
if torch.cuda.get_device_capability(DEVICE) == (8,0): ## A100 fix thanks to Emad
print('Disabling CUDNN for A100 gpu', file=sys.stderr)
torch.backends.cudnn.enabled = False
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "DefMidasFns"
# !! }}
#@title ### 1.4 Define Midas functions
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet
# Initialize MiDaS depth model.
# It remains resident in VRAM and likely takes around 2GB VRAM.
# You could instead initialize it for each frame (and free it after each frame) to save VRAM.. but initializing it is slow.
default_models = {
"midas_v21_small": f"{model_path}/midas_v21_small-70d6b9c8.pt",
"midas_v21": f"{model_path}/midas_v21-f6b98070.pt",
"dpt_large": f"{model_path}/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": f"{model_path}/dpt_hybrid-midas-501f0c75.pt",
"dpt_hybrid_nyu": f"{model_path}/dpt_hybrid_nyu-2ce69ec7.pt",}
'''
def init_midas_depth_model(midas_model_type="dpt_large", optimize=True):
midas_model = None
net_w = None
net_h = None
resize_mode = None
normalization = None
print(f"Initializing MiDaS '{midas_model_type}' depth model...")
# load network
midas_model_path = default_models[midas_model_type]
if midas_model_type == "dpt_large": # DPT-Large
midas_model = DPTDepthModel(
path=midas_model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif midas_model_type == "dpt_hybrid": #DPT-Hybrid
midas_model = DPTDepthModel(
path=midas_model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode="minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif midas_model_type == "dpt_hybrid_nyu": #DPT-Hybrid-NYU
midas_model = DPTDepthModel(
path=midas_model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode="minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif midas_model_type == "midas_v21":
midas_model = MidasNet(midas_model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode="upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif midas_model_type == "midas_v21_small":
midas_model = MidasNet_small(midas_model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode="upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"midas_model_type '{midas_model_type}' not implemented")
assert False
midas_transform = T.Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
midas_model.eval()
if optimize==True:
if DEVICE == torch.device("cuda"):
midas_model = midas_model.to(memory_format=torch.channels_last)
midas_model = midas_model.half()
midas_model.to(DEVICE)
print(f"MiDaS '{midas_model_type}' depth model initialized.")
return midas_model, midas_transform, net_w, net_h, resize_mode, normalization
'''
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "DefFns"
# !! }}
#@title 1.5 Define necessary functions
# https://gist.github.com/adefossez/0646dbe9ed4005480a2407c62aac8869
import py3d_tools as p3dT
import disco_xform_utils as dxf
def interp(t):
return 3 * t**2 - 2 * t ** 3
def perlin(width, height, scale=10, device=None):
gx, gy = torch.randn(2, width + 1, height + 1, 1, 1, device=device)
xs = torch.linspace(0, 1, scale + 1)[:-1, None].to(device)
ys = torch.linspace(0, 1, scale + 1)[None, :-1].to(device)
wx = 1 - interp(xs)
wy = 1 - interp(ys)
dots = 0
dots += wx * wy * (gx[:-1, :-1] * xs + gy[:-1, :-1] * ys)
dots += (1 - wx) * wy * (-gx[1:, :-1] * (1 - xs) + gy[1:, :-1] * ys)
dots += wx * (1 - wy) * (gx[:-1, 1:] * xs - gy[:-1, 1:] * (1 - ys))
dots += (1 - wx) * (1 - wy) * (-gx[1:, 1:] * (1 - xs) - gy[1:, 1:] * (1 - ys))
return dots.permute(0, 2, 1, 3).contiguous().view(width * scale, height * scale)
def perlin_ms(octaves, width, height, grayscale, device=device):
out_array = [0.5] if grayscale else [0.5, 0.5, 0.5]
# out_array = [0.0] if grayscale else [0.0, 0.0, 0.0]
for i in range(1 if grayscale else 3):
scale = 2 ** len(octaves)
oct_width = width
oct_height = height
for oct in octaves:
p = perlin(oct_width, oct_height, scale, device)
out_array[i] += p * oct
scale //= 2
oct_width *= 2
oct_height *= 2
return torch.cat(out_array)
def create_perlin_noise(octaves=[1, 1, 1, 1], width=2, height=2, grayscale=True):
out = perlin_ms(octaves, width, height, grayscale)
if grayscale:
out = TF.resize(size=(side_y, side_x), img=out.unsqueeze(0))
out = TF.to_pil_image(out.clamp(0, 1)).convert('RGB')
else:
out = out.reshape(-1, 3, out.shape[0]//3, out.shape[1])
out = TF.resize(size=(side_y, side_x), img=out)
out = TF.to_pil_image(out.clamp(0, 1).squeeze())
out = ImageOps.autocontrast(out)
return out
def regen_perlin():
if perlin_mode == 'color':
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, False)
elif perlin_mode == 'gray':
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, True)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True)
else:
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True)
init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device).unsqueeze(0).mul(2).sub(1)
del init2
return init.expand(batch_size, -1, -1, -1)
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def read_image_workaround(path):
"""OpenCV reads images as BGR, Pillow saves them as RGB. Work around
this incompatibility to avoid colour inversions."""
im_tmp = cv2.imread(path)
return cv2.cvtColor(im_tmp, cv2.COLOR_BGR2RGB)
def parse_prompt(prompt):
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 2)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 1)
vals = vals + ['', '1'][len(vals):]
return vals[0], float(vals[1])
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.reshape([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.reshape([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, skip_augs=False):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.skip_augs = skip_augs
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
def forward(self, input):
input = T.Pad(input.shape[2]//4, fill=0)(input)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
cutouts = []
for ch in range(self.cutn):
if ch > self.cutn - self.cutn//4:
cutout = input.clone()
else:
size = int(max_size * torch.zeros(1,).normal_(mean=.8, std=.3).clip(float(self.cut_size/max_size), 1.))
offsetx = torch.randint(0, abs(sideX - size + 1), ())
offsety = torch.randint(0, abs(sideY - size + 1), ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if not self.skip_augs:
cutout = self.augs(cutout)
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
del cutout
cutouts = torch.cat(cutouts, dim=0)
return cutouts
cutout_debug = False
padargs = {}
class MakeCutoutsDango(nn.Module):
def __init__(self, cut_size,
Overview=4,
InnerCrop = 0, IC_Size_Pow=0.5, IC_Grey_P = 0.2
):
super().__init__()
self.cut_size = cut_size
self.Overview = Overview
self.InnerCrop = InnerCrop
self.IC_Size_Pow = IC_Size_Pow
self.IC_Grey_P = IC_Grey_P
if args.animation_mode == 'None':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation = T.InterpolationMode.BILINEAR),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.1),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
elif args.animation_mode == 'Video Input':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
elif args.animation_mode == '2D' or args.animation_mode == '3D':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.4),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation = T.InterpolationMode.BILINEAR),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.1),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.3),
])
def forward(self, input):
cutouts = []
gray = T.Grayscale(3)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
l_size = max(sideX, sideY)
output_shape = [1,3,self.cut_size,self.cut_size]
output_shape_2 = [1,3,self.cut_size+2,self.cut_size+2]
pad_input = F.pad(input,((sideY-max_size)//2,(sideY-max_size)//2,(sideX-max_size)//2,(sideX-max_size)//2), **padargs)
cutout = resize(pad_input, out_shape=output_shape)
if self.Overview>0:
if self.Overview<=4:
if self.Overview>=1:
cutouts.append(cutout)
if self.Overview>=2:
cutouts.append(gray(cutout))
if self.Overview>=3:
cutouts.append(TF.hflip(cutout))
if self.Overview==4:
cutouts.append(gray(TF.hflip(cutout)))
else:
cutout = resize(pad_input, out_shape=output_shape)
for _ in range(self.Overview):
cutouts.append(cutout)
if cutout_debug:
if is_colab:
TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("/content/cutout_overview0.jpg",quality=99)
else:
TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("cutout_overview0.jpg",quality=99)
if self.InnerCrop >0:
for i in range(self.InnerCrop):
size = int(torch.rand([])**self.IC_Size_Pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if i <= int(self.IC_Grey_P * self.InnerCrop):
cutout = gray(cutout)
cutout = resize(cutout, out_shape=output_shape)
cutouts.append(cutout)
if cutout_debug:
if is_colab:
TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("/content/cutout_InnerCrop.jpg",quality=99)
else:
TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("cutout_InnerCrop.jpg",quality=99)
cutouts = torch.cat(cutouts)
if skip_augs is not True: cutouts=self.augs(cutouts)
return cutouts
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
def range_loss(input):
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
stop_on_next_loop = False # Make sure GPU memory doesn't get corrupted from cancelling the run mid-way through, allow a full frame to complete
TRANSLATION_SCALE = 1.0/200.0
def do_3d_step(img_filepath, frame_num, midas_model, midas_transform):
if args.key_frames:
translation_x = args.translation_x_series[frame_num]
translation_y = args.translation_y_series[frame_num]
translation_z = args.translation_z_series[frame_num]
rotation_3d_x = args.rotation_3d_x_series[frame_num]
rotation_3d_y = args.rotation_3d_y_series[frame_num]
rotation_3d_z = args.rotation_3d_z_series[frame_num]
print(
f'translation_x: {translation_x}',
f'translation_y: {translation_y}',
f'translation_z: {translation_z}',
f'rotation_3d_x: {rotation_3d_x}',
f'rotation_3d_y: {rotation_3d_y}',
f'rotation_3d_z: {rotation_3d_z}',
)
translate_xyz = [-translation_x*TRANSLATION_SCALE, translation_y*TRANSLATION_SCALE, -translation_z*TRANSLATION_SCALE]
rotate_xyz_degrees = [rotation_3d_x, rotation_3d_y, rotation_3d_z]
print('translation:',translate_xyz)
print('rotation:',rotate_xyz_degrees)
rotate_xyz = [math.radians(rotate_xyz_degrees[0]), math.radians(rotate_xyz_degrees[1]), math.radians(rotate_xyz_degrees[2])]
rot_mat = p3dT.euler_angles_to_matrix(torch.tensor(rotate_xyz, device=device), "XYZ").unsqueeze(0)
print("rot_mat: " + str(rot_mat))
next_step_pil = dxf.transform_image_3d(img_filepath, midas_model, midas_transform, DEVICE,
rot_mat, translate_xyz, args.near_plane, args.far_plane,
args.fov, padding_mode=args.padding_mode,
sampling_mode=args.sampling_mode, midas_weight=args.midas_weight)
return next_step_pil
def symmetry_transformation_fn(x):
if args.use_horizontal_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :, :w//2], torch.flip(x[:, :, :, :w//2], [-1])), -1)
print("horizontal symmetry applied")
if args.use_vertical_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :h//2, :], torch.flip(x[:, :, :h//2, :], [-2])), -2)
print("vertical symmetry applied")
return x
def do_run():
seed = args.seed
print(range(args.start_frame, args.max_frames))
#if (args.animation_mode == "3D") and (args.midas_weight > 0.0):
# midas_model, midas_transform, midas_net_w, midas_net_h, midas_resize_mode, midas_normalization = init_midas_depth_model(args.midas_depth_model)
for frame_num in range(args.start_frame, args.max_frames):
if stop_on_next_loop:
break
display.clear_output(wait=True)
# Print Frame progress if animation mode is on
if args.animation_mode != "None":
batchBar = tqdm(range(args.max_frames), desc ="Frames")
batchBar.n = frame_num
batchBar.refresh()
'''
# Inits if not video frames
if args.animation_mode != "Video Input":
if args.init_image in ['','none', 'None', 'NONE']:
init_image = None
else:
init_image = args.init_image
init_scale = args.init_scale
skip_steps = args.skip_steps
if args.animation_mode == "2D":
if args.key_frames:
angle = args.angle_series[frame_num]
zoom = args.zoom_series[frame_num]
translation_x = args.translation_x_series[frame_num]
translation_y = args.translation_y_series[frame_num]
print(
f'angle: {angle}',
f'zoom: {zoom}',
f'translation_x: {translation_x}',
f'translation_y: {translation_y}',
)
if frame_num > 0:
seed += 1
if resume_run and frame_num == start_frame:
img_0 = cv2.imread(batchFolder+f"/{batch_name}({batchNum})_{start_frame-1:04}.png")
else:
img_0 = cv2.imread('prevFrame.png')
center = (1*img_0.shape[1]//2, 1*img_0.shape[0]//2)
trans_mat = np.float32(
[[1, 0, translation_x],
[0, 1, translation_y]]
)
rot_mat = cv2.getRotationMatrix2D( center, angle, zoom )
trans_mat = np.vstack([trans_mat, [0,0,1]])
rot_mat = np.vstack([rot_mat, [0,0,1]])
transformation_matrix = np.matmul(rot_mat, trans_mat)
img_0 = cv2.warpPerspective(
img_0,
transformation_matrix,
(img_0.shape[1], img_0.shape[0]),
borderMode=cv2.BORDER_WRAP
)
cv2.imwrite('prevFrameScaled.png', img_0)
init_image = 'prevFrameScaled.png'
init_scale = args.frames_scale
skip_steps = args.calc_frames_skip_steps
if args.animation_mode == "3D":
if frame_num > 0:
seed += 1
if resume_run and frame_num == start_frame:
img_filepath = batchFolder+f"/{batch_name}({batchNum})_{start_frame-1:04}.png"
if turbo_mode and frame_num > turbo_preroll:
shutil.copyfile(img_filepath, 'oldFrameScaled.png')
else:
img_filepath = '/content/prevFrame.png' if is_colab else 'prevFrame.png'
next_step_pil = do_3d_step(img_filepath, frame_num, midas_model, midas_transform)
next_step_pil.save('prevFrameScaled.png')
### Turbo mode - skip some diffusions, use 3d morph for clarity and to save time
if turbo_mode:
if frame_num == turbo_preroll: #start tracking oldframe
next_step_pil.save('oldFrameScaled.png')#stash for later blending
elif frame_num > turbo_preroll:
#set up 2 warped image sequences, old & new, to blend toward new diff image
old_frame = do_3d_step('oldFrameScaled.png', frame_num, midas_model, midas_transform)
old_frame.save('oldFrameScaled.png')
if frame_num % int(turbo_steps) != 0:
print('turbo skip this frame: skipping clip diffusion steps')
filename = f'{args.batch_name}({args.batchNum})_{frame_num:04}.png'
blend_factor = ((frame_num % int(turbo_steps))+1)/int(turbo_steps)
print('turbo skip this frame: skipping clip diffusion steps and saving blended frame')
newWarpedImg = cv2.imread('prevFrameScaled.png')#this is already updated..
oldWarpedImg = cv2.imread('oldFrameScaled.png')
blendedImage = cv2.addWeighted(newWarpedImg, blend_factor, oldWarpedImg,1-blend_factor, 0.0)
cv2.imwrite(f'{batchFolder}/{filename}',blendedImage)
next_step_pil.save(f'{img_filepath}') # save it also as prev_frame to feed next iteration
if vr_mode:
generate_eye_views(TRANSLATION_SCALE,batchFolder,filename,frame_num,midas_model, midas_transform)
continue
else:
#if not a skip frame, will run diffusion and need to blend.
oldWarpedImg = cv2.imread('prevFrameScaled.png')
cv2.imwrite(f'oldFrameScaled.png',oldWarpedImg)#swap in for blending later
print('clip/diff this frame - generate clip diff image')
init_image = 'prevFrameScaled.png'
init_scale = args.frames_scale
skip_steps = args.calc_frames_skip_steps
if args.animation_mode == "Video Input":
init_scale = args.video_init_frames_scale
skip_steps = args.calc_frames_skip_steps
if not video_init_seed_continuity:
seed += 1
if video_init_flow_warp:
if frame_num == 0:
skip_steps = args.video_init_skip_steps
init_image = f'{videoFramesFolder}/{frame_num+1:04}.jpg'
if frame_num > 0:
prev = PIL.Image.open(batchFolder+f"/{batch_name}({batchNum})_{frame_num-1:04}.png")
frame1_path = f'{videoFramesFolder}/{frame_num:04}.jpg'
frame2 = PIL.Image.open(f'{videoFramesFolder}/{frame_num+1:04}.jpg')
flo_path = f"/{flo_folder}/{frame1_path.split('/')[-1]}.npy"
init_image = 'warped.png'
print(video_init_flow_blend)
weights_path = None
if video_init_check_consistency:
# TBD
pass
warp(prev, frame2, flo_path, blend=video_init_flow_blend, weights_path=weights_path).save(init_image)
else:
init_image = f'{videoFramesFolder}/{frame_num+1:04}.jpg'
'''
loss_values = []
if seed is not None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
target_embeds, weights = [], []
if args.prompts_series is not None and frame_num >= len(args.prompts_series):
frame_prompt = args.prompts_series[-1]
elif args.prompts_series is not None:
frame_prompt = args.prompts_series[frame_num]
else:
frame_prompt = []
#mask_prompt = mask_prompts["0"]
print(args.image_prompts_series)
if args.image_prompts_series is not None and frame_num >= len(args.image_prompts_series):
image_prompt = args.image_prompts_series[-1]
elif args.image_prompts_series is not None:
image_prompt = args.image_prompts_series[frame_num]
else:
image_prompt = []
print(f'Frame {frame_num} Prompt: {frame_prompt}')
model_stats = []
if len(mask_images) > 0:
masks = []
for i in range(0,len(mask_images)):
if mask_images[i] == '':
continue
maskimg = Image.open(fetch(mask_images[i])).convert('RGB')
mask = maskimg.resize((args.side_x, args.side_y), Image.LANCZOS)
mask = TF.to_tensor(mask).to(device).unsqueeze(0) #.mul(2).sub(1)
#print("mask range", mask.min(), mask.max())
mask = mask - mask.min()
mask = mask / mask.max()
masks.append(mask)
fmask = torch.ones_like(mask)
for m in masks:
fmask *= mask
fmask = 1 - fmask
for clip_model in clip_models:
cutn = 16
model_stat = {"clip_model":None,"target_embeds":[],"make_cutouts":None,"weights":[]}
model_stat["clip_model"] = clip_model
for prompt in frame_prompt:
txt, weight = parse_prompt(prompt)
txt = clip_model.encode_text(clip.tokenize(prompt).to(device)).float()
if args.fuzzy_prompt:
for i in range(25):
model_stat["target_embeds"].append((txt + torch.randn(txt.shape).cuda() * args.rand_mag).clamp(0,1))
model_stat["weights"].append(weight)
else:
model_stat["target_embeds"].append(txt)
model_stat["weights"].append(weight)
model_stat["mtargets"] = []
model_stat["mweights"] = []
model_stat["masks"] = []
#print(mask_prompts)
mi = 0
for mask_prompt in mask_prompts:
for mprompt in mask_prompt:
mtxt, mweight = parse_prompt(mprompt)
memb = clip_model.encode_text(clip.tokenize(mtxt).to(device)).float()
#if args.fuzzy_prompt:
# for i in range(25):
# #model_stat["mtarget_embeds"].append((mtxt + torch.randn(mtxt.shape).cuda() * args.rand_mag).clamp(0,1))
# #model_stat["mweights"].append(mweight)
#else:
# #model_stat["mtarget_embeds"].append(mtxt)
# #model_stat["mweights"].append(mweight)
model_stat['mtargets'].append(memb.cuda())
model_stat['mweights'].append(mweight)
model_stat['masks'].append(masks[mi].cuda())
mi += 1
model_stat["mweights"] = torch.tensor(model_stat["mweights"], device=device)
if model_stat["mweights"].sum() < 0.03:
print("sum of weights must be nonzero")
else:
model_stat["mweights"] /= model_stat["mweights"].sum()
model_stat["mweights"] *= mi
if image_prompt:
model_stat["make_cutouts"] = MakeCutouts(clip_model.visual.input_resolution, cutn, skip_augs=skip_augs)
for prompt in image_prompt:
path, weight = parse_prompt(prompt)
img = Image.open(fetch(path)).convert('RGB')
img = TF.resize(img, min(side_x, side_y, *img.size), T.InterpolationMode.LANCZOS)
batch = model_stat["make_cutouts"](TF.to_tensor(img).to(device).unsqueeze(0).mul(2).sub(1))
embed = clip_model.encode_image(normalize(batch)).float()
if fuzzy_prompt:
for i in range(25):
model_stat["target_embeds"].append((embed + torch.randn(embed.shape).cuda() * rand_mag).clamp(0,1))
weights.extend([weight / cutn] * cutn)
else:
model_stat["target_embeds"].append(embed)
model_stat["weights"].extend([weight / cutn] * cutn)
model_stat["target_embeds"] = torch.cat(model_stat["target_embeds"])
model_stat["weights"] = torch.tensor(model_stat["weights"], device=device)
if model_stat["weights"].sum().abs() < 1e-3:
raise RuntimeError('The weights must not sum to 0.')
model_stat["weights"] /= model_stat["weights"].sum().abs()
#model_stat["mtargets"] = torch.cat(model_stat["mtargets"])
#model_stat["mweights"] = torch.cat(model_stat["mweights"], device=device)
#if model_stat["mweights"].sum().abs() < 1e-3:
# raise RuntimeError('The mask prompt weights must not sum to 0.')
#model_stat["mweights"] /= model_stat["mweights"].sum().abs()
model_stats.append(model_stat)
init = None
if init_image != "":
print("Init image:", init_image)
init = Image.open(fetch(init_image)).convert('RGB')
init = init.resize((args.side_x, args.side_y), Image.LANCZOS)
init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)
if args.perlin_init:
if args.perlin_mode == 'color':
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, False)
elif args.perlin_mode == 'gray':
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, True)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True)
else:
init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False)
init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True)
# init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device)
init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device).unsqueeze(0).mul(2).sub(1)
del init2
cur_t = None
def cond_fn(x, t, y=None):
with torch.enable_grad():
x_is_NaN = False
x = x.detach().requires_grad_()
n = x.shape[0]
if use_secondary_model is True:
alpha = torch.tensor(diffusion.sqrt_alphas_cumprod[cur_t], device=device, dtype=torch.float32)
sigma = torch.tensor(diffusion.sqrt_one_minus_alphas_cumprod[cur_t], device=device, dtype=torch.float32)
cosine_t = alpha_sigma_to_t(alpha, sigma)
out = secondary_model(x, cosine_t[None].repeat([n])).pred
fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
x_in = out * fac + x * (1 - fac)
x_in_grad = torch.zeros_like(x_in)
else:
my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
x_in = out['pred_xstart'] * fac + x * (1 - fac)
x_in_grad = torch.zeros_like(x_in)
for model_stat in model_stats:
for i in range(args.cutn_batches):
t_int = int(t.item())+1 #errors on last step without +1, need to find source
#when using SLIP Base model the dimensions need to be hard coded to avoid AttributeError: 'VisionTransformer' object has no attribute 'input_resolution'
try:
input_resolution=model_stat["clip_model"].visual.input_resolution
except:
input_resolution=224
cuts = MakeCutoutsDango(input_resolution,
Overview= args.cut_overview[1000-t_int],
InnerCrop = args.cut_innercut[1000-t_int], IC_Size_Pow=args.cut_ic_pow, IC_Grey_P = args.cut_icgray_p[1000-t_int]
)
clip_in = normalize(cuts(x_in.add(1).div(2)))
image_embeds = model_stat["clip_model"].encode_image(clip_in).float()
dists = spherical_dist_loss(image_embeds.unsqueeze(1), model_stat["target_embeds"].unsqueeze(0))
dists = dists.view([args.cut_overview[1000-t_int]+args.cut_innercut[1000-t_int], n, -1])
losses = dists.mul(model_stat["weights"]).sum(2).mean(0)
#loss_values.append(losses.sum().item()) # log loss, probably shouldn't do per cutn_batch
x_in_grad += (1-balance)*fmask*torch.autograd.grad(losses.sum() * clip_guidance_scale, x_in, retain_graph = True)[0] / cutn_batches
#for i in range(args.cutn_batches):
#t_int = int(t.item())+1 #errors on last step without +1, need to find source
#when using SLIP Base model the dimensions need to be hard coded to avoid AttributeError: 'VisionTransformer' object has no attribute 'input_resolution'
#try:
# input_resolution=model_stat["clip_model"].visual.input_resolution
#except:
# input_resolution=224
#cuts = MakeCutoutsDango(input_resolution,
# Overview= args.cut_overview[1000-t_int],
# InnerCrop = args.cut_innercut[1000-t_int], IC_Size_Pow=args.cut_ic_pow, IC_Grey_P = args.cut_icgray_p[1000-t_int]
# )
#clip_in = normalize(cuts(x_in.add(1).div(2)))
#mask_embeds = model_stat["clip_model"].encode_image(clip_in).float()
mask_embeds = image_embeds.clone()
for mi in range(0, len(model_stat["mtargets"])):
mtarget = model_stat['mtargets'][mi].cuda()
mweight = model_stat['mweights'][mi].cuda()
dists = spherical_dist_loss(mask_embeds.unsqueeze(1), mtarget.unsqueeze(0))
dists = dists.view([args.cut_overview[1000-t_int]+args.cut_innercut[1000-t_int], n, -1])
losses = dists.mul(mweight).sum(2).mean(0)
#loss_values.append(losses.sum().item()) # log loss, probably shouldn't do per cutn_batch
x_in_grad += balance * model_stat['masks'][mi].cuda() * torch.autograd.grad(losses.sum() * clip_guidance_scale, x_in, retain_graph=True)[0] / cutn_batches
tv_losses = tv_loss(x_in)
if use_secondary_model is True:
range_losses = range_loss(out)
else:
range_losses = range_loss(out['pred_xstart'])
sat_losses = torch.abs(x_in - x_in.clamp(min=-1,max=1)).mean()
loss = tv_losses.sum() * tv_scale + range_losses.sum() * range_scale + sat_losses.sum() * sat_scale
if init is not None and init_scale:
init_losses = lpips_model(x_in, init)
loss = loss + init_losses.sum() * init_scale
x_in_grad += torch.autograd.grad(loss, x_in)[0]
if torch.isnan(x_in_grad).any()==False:
grad = -torch.autograd.grad(x_in, x, x_in_grad)[0]
else:
# print("NaN'd")
x_is_NaN = True
grad = torch.zeros_like(x)
if args.clamp_grad and x_is_NaN == False:
magnitude = grad.square().mean().sqrt()
return grad * magnitude.clamp(max=args.clamp_max) / magnitude #min=-0.02, min=-clamp_max,
return grad
if args.diffusion_sampling_mode == 'ddim':
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.plms_sample_loop_progressive
image_display = Output()
for i in range(args.n_batches):
if args.animation_mode == 'None':
display.clear_output(wait=True)
batchBar = tqdm(range(args.n_batches), desc ="Batches")
batchBar.n = i
batchBar.refresh()
print('')
display.display(image_display)
gc.collect()
torch.cuda.empty_cache()
cur_t = diffusion.num_timesteps - skip_steps - 1
total_steps = cur_t
if perlin_init:
init = regen_perlin()
if args.diffusion_sampling_mode == 'ddim':
samples = sample_fn(
model,
(batch_size, 3, args.side_y, args.side_x),
clip_denoised=clip_denoised,
model_kwargs={},
cond_fn=cond_fn,
progress=True,
skip_timesteps=skip_steps,
init_image=init,
randomize_class=randomize_class,
eta=eta,
transformation_fn=symmetry_transformation_fn,
transformation_percent=args.transformation_percent
)
else:
samples = sample_fn(
model,
(batch_size, 3, args.side_y, args.side_x),
clip_denoised=clip_denoised,
model_kwargs={},
cond_fn=cond_fn,
progress=True,
skip_timesteps=skip_steps,
init_image=init,
randomize_class=randomize_class,
order=2,
)
# with run_display:
# display.clear_output(wait=True)
for j, sample in enumerate(samples):
cur_t -= 1
intermediateStep = False
if args.steps_per_checkpoint is not None:
if j % steps_per_checkpoint == 0 and j > 0:
intermediateStep = True
elif j in args.intermediate_saves:
intermediateStep = True
with image_display:
if j % args.display_rate == 0 or cur_t == -1 or intermediateStep == True:
for k, image in enumerate(sample['pred_xstart']):
# tqdm.write(f'Batch {i}, step {j}, output {k}:')
current_time = datetime.now().strftime('%y%m%d-%H%M%S_%f')
percent = math.ceil(j/total_steps*100)
if args.n_batches > 0:
#if intermediates are saved to the subfolder, don't append a step or percentage to the name
if cur_t == -1 and args.intermediates_in_subfolder is True:
save_num = f'{frame_num:04}' if animation_mode != "None" else i
filename = f'{args.batch_name}({args.batchNum})_{save_num}.png'
else:
#If we're working with percentages, append it
if args.steps_per_checkpoint is not None:
filename = f'{args.batch_name}_{args.batchNum}_{i:04}-{percent:02}.png'
# Or else, iIf we're working with specific steps, append those
else:
filename = f'{args.batch_name}({args.batchNum})_{i:04}-{j:03}.png'
image = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
if j % args.display_rate == 0 or cur_t == -1:
image.save('progress.png')
display.clear_output(wait=True)
display.display(display.Image('progress.png'))
if args.steps_per_checkpoint is not None:
if j % args.steps_per_checkpoint == 0 and j > 0:
if args.intermediates_in_subfolder is True:
image.save(f'{partialFolder}/{filename}')
else:
image.save(f'{batchFolder}/{filename}')
else:
if j in args.intermediate_saves:
if args.intermediates_in_subfolder is True:
image.save(f'{partialFolder}/{filename}')
else:
image.save(f'{batchFolder}/{filename}')
if cur_t == -1:
if frame_num == 0:
save_settings()
if args.animation_mode != "None":
image.save('prevFrame.png')
image.save(f'{batchFolder}/{filename}')
if args.animation_mode == "3D":
# If turbo, save a blended image
if turbo_mode and frame_num > 0:
# Mix new image with prevFrameScaled
blend_factor = (1)/int(turbo_steps)
newFrame = cv2.imread('prevFrame.png') # This is already updated..
prev_frame_warped = cv2.imread('prevFrameScaled.png')
blendedImage = cv2.addWeighted(newFrame, blend_factor, prev_frame_warped, (1-blend_factor), 0.0)
cv2.imwrite(f'{batchFolder}/{filename}',blendedImage)
else:
image.save(f'{batchFolder}/{filename}')
if vr_mode:
generate_eye_views(TRANSLATION_SCALE, batchFolder, filename, frame_num, midas_model, midas_transform)
# if frame_num != args.max_frames-1:
# display.clear_output()
plt.plot(np.array(loss_values), 'r')
def generate_eye_views(trans_scale,batchFolder,filename,frame_num,midas_model, midas_transform):
for i in range(2):
theta = vr_eye_angle * (math.pi/180)
ray_origin = math.cos(theta) * vr_ipd / 2 * (-1.0 if i==0 else 1.0)
ray_rotation = (theta if i==0 else -theta)
translate_xyz = [-(ray_origin)*trans_scale, 0,0]
rotate_xyz = [0, (ray_rotation), 0]
rot_mat = p3dT.euler_angles_to_matrix(torch.tensor(rotate_xyz, device=device), "XYZ").unsqueeze(0)
transformed_image = dxf.transform_image_3d(f'{batchFolder}/{filename}', midas_model, midas_transform, DEVICE,
rot_mat, translate_xyz, args.near_plane, args.far_plane,
args.fov, padding_mode=args.padding_mode,
sampling_mode=args.sampling_mode, midas_weight=args.midas_weight,spherical=True)
eye_file_path = batchFolder+f"/frame_{frame_num:04}" + ('_l' if i==0 else '_r')+'.png'
transformed_image.save(eye_file_path)
def save_settings():
setting_list = {
'text_prompts': text_prompts,
'image_prompts': image_prompts,
'clip_guidance_scale': clip_guidance_scale,
'tv_scale': tv_scale,
'range_scale': range_scale,
'sat_scale': sat_scale,
# 'cutn': cutn,
'cutn_batches': cutn_batches,
'max_frames': max_frames,
'interp_spline': interp_spline,
# 'rotation_per_frame': rotation_per_frame,
'init_image': init_image,
'init_scale': init_scale,
'skip_steps': skip_steps,
# 'zoom_per_frame': zoom_per_frame,
'frames_scale': frames_scale,
'frames_skip_steps': frames_skip_steps,
'perlin_init': perlin_init,
'perlin_mode': perlin_mode,
'skip_augs': skip_augs,
'randomize_class': randomize_class,
'clip_denoised': clip_denoised,
'clamp_grad': clamp_grad,
'clamp_max': clamp_max,
'seed': seed,
'fuzzy_prompt': fuzzy_prompt,
'rand_mag': rand_mag,
'eta': eta,
'width': width_height[0],
'height': width_height[1],
'diffusion_model': diffusion_model,
'use_secondary_model': use_secondary_model,
'steps': steps,
'diffusion_steps': diffusion_steps,
'diffusion_sampling_mode': diffusion_sampling_mode,
'ViTB32': ViTB32,
'ViTB16': ViTB16,
'ViTL14': ViTL14,
'ViTL14_336px': ViTL14_336px,
'RN101': RN101,
'RN50': RN50,
'RN50x4': RN50x4,
'RN50x16': RN50x16,
'RN50x64': RN50x64,
'cut_overview': str(cut_overview),
'cut_innercut': str(cut_innercut),
'cut_ic_pow': cut_ic_pow,
'cut_icgray_p': str(cut_icgray_p),
'key_frames': key_frames,
'max_frames': max_frames,
#'angle': angle,
#'zoom': zoom,
#'translation_x': translation_x,
#'translation_y': translation_y,
#'translation_z': translation_z,
#'rotation_3d_x': rotation_3d_x,
#'rotation_3d_y': rotation_3d_y,
#'rotation_3d_z': rotation_3d_z,
#'midas_depth_model': midas_depth_model,
#'midas_weight': midas_weight,
#'near_plane': near_plane,
#'far_plane': far_plane,
#'fov': fov,
'padding_mode': padding_mode,
'sampling_mode': sampling_mode,
#'video_init_path':video_init_path,
#'extract_nth_frame':extract_nth_frame,
#'video_init_seed_continuity': video_init_seed_continuity,
'turbo_mode':turbo_mode,
'turbo_steps':turbo_steps,
'turbo_preroll':turbo_preroll,
'use_horizontal_symmetry':use_horizontal_symmetry,
'use_vertical_symmetry':use_vertical_symmetry,
'transformation_percent':transformation_percent,
}
# print('Settings:', setting_list)
with open(f"{batchFolder}/{batch_name}({batchNum})_settings.txt", "w+") as f: #save settings
json.dump(setting_list, f, ensure_ascii=False, indent=4)
# %%
# !! {"metadata":{
# !! "cellView": "form",
# !! "id": "DefSecModel"
# !! }}
#@title 1.6 Define the secondary diffusion model
def append_dims(x, n):
return x[(Ellipsis, *(None,) * (n - x.ndim))]
def expand_to_planes(x, shape):
return append_dims(x, len(shape)).repeat([1, 1, *shape[2:]])
def alpha_sigma_to_t(alpha, sigma):
return torch.atan2(sigma, alpha) * 2 / math.pi
def t_to_alpha_sigma(t):
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@dataclass
class DiffusionOutput:
v: torch.Tensor
pred: torch.Tensor
eps: torch.Tensor
class ConvBlock(nn.Sequential):
def __init__(self, c_in, c_out):
super().__init__(
nn.Conv2d(c_in, c_out, 3, padding=1),
nn.ReLU(inplace=True),
)
class SkipBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return torch.cat([self.main(input), self.skip(input)], dim=1)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
class SecondaryDiffusionImageNet(nn.Module):
def __init__(self):
super().__init__()
c = 64 # The base channel count
self.timestep_embed = FourierFeatures(1, 16)
self.net = nn.Sequential(
ConvBlock(3 + 16, c),
ConvBlock(c, c),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c, c * 2),
ConvBlock(c * 2, c * 2),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c * 2, c * 4),
ConvBlock(c * 4, c * 4),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c * 4, c * 8),
ConvBlock(c * 8, c * 4),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 8, c * 4),
ConvBlock(c * 4, c * 2),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 4, c * 2),
ConvBlock(c * 2, c),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 2, c),
nn.Conv2d(c, 3, 3, padding=1),
)
def forward(self, input, t):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
v = self.net(torch.cat([input, timestep_embed], dim=1))
alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
pred = input * alphas - v * sigmas
eps = input * sigmas + v * alphas
return DiffusionOutput(v, pred, eps)
class SecondaryDiffusionImageNet2(nn.Module):
def __init__(self):
super().__init__()
c = 64 # The base channel count
cs = [c, c * 2, c * 2, c * 4, c * 4, c * 8]
self.timestep_embed = FourierFeatures(1, 16)
self.down = nn.AvgPool2d(2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.net = nn.Sequential(
ConvBlock(3 + 16, cs[0]),
ConvBlock(cs[0], cs[0]),
SkipBlock([
self.down,
ConvBlock(cs[0], cs[1]),
ConvBlock(cs[1], cs[1]),
SkipBlock([
self.down,
ConvBlock(cs[1], cs[2]),
ConvBlock(cs[2], cs[2]),
SkipBlock([
self.down,
ConvBlock(cs[2], cs[3]),
ConvBlock(cs[3], cs[3]),
SkipBlock([
self.down,
ConvBlock(cs[3], cs[4]),
ConvBlock(cs[4], cs[4]),
SkipBlock([
self.down,
ConvBlock(cs[4], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[4]),
self.up,
]),
ConvBlock(cs[4] * 2, cs[4]),
ConvBlock(cs[4], cs[3]),
self.up,
]),
ConvBlock(cs[3] * 2, cs[3]),
ConvBlock(cs[3], cs[2]),
self.up,
]),
ConvBlock(cs[2] * 2, cs[2]),
ConvBlock(cs[2], cs[1]),
self.up,
]),
ConvBlock(cs[1] * 2, cs[1]),
ConvBlock(cs[1], cs[0]),
self.up,
]),
ConvBlock(cs[0] * 2, cs[0]),
nn.Conv2d(cs[0], 3, 3, padding=1),
)
def forward(self, input, t):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
v = self.net(torch.cat([input, timestep_embed], dim=1))
alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
pred = input * alphas - v * sigmas
eps = input * sigmas + v * alphas
return DiffusionOutput(v, pred, eps)
# %%
# !! {"metadata":{
# !! "id": "DiffClipSetTop"
# !! }}
"""
# 2. Diffusion and CLIP model settings
"""
# %%
# !! {"metadata":{
# !! "id": "ModelSettings"
# !! }}
#@markdown ####**Models Settings:**
diffusion_model = "512x512_diffusion_uncond_finetune_008100" #@param ["256x256_diffusion_uncond", "512x512_diffusion_uncond_finetune_008100", "custom"]
use_secondary_model = True #@param {type: 'boolean'}
diffusion_sampling_mode = 'ddim' #@param ['plms','ddim']
#@markdown #####**Custom model:**
custom_path = '/content/drive/MyDrive/deep_learning/ddpm/ema_0.9999_058000.pt'#@param {type: 'string'}
#@markdown #####**CLIP settings:**
use_checkpoint = True #@param {type: 'boolean'}
ViTB32 = True #@param{type:"boolean"}
ViTB16 = True #@param{type:"boolean"}
ViTL14 = False #@param{type:"boolean"}
ViTL14_336px = False #@param{type:"boolean"}
RN101 = False #@param{type:"boolean"}
RN50 = True #@param{type:"boolean"}
RN50x4 = False #@param{type:"boolean"}
RN50x16 = False #@param{type:"boolean"}
RN50x64 = False #@param{type:"boolean"}
#@markdown If you're having issues with model downloads, check this to compare SHA's:
check_model_SHA = False #@param{type:"boolean"}
def download_models(diffusion_model,use_secondary_model,fallback=False):
model_256_downloaded = False
model_512_downloaded = False
model_secondary_downloaded = False
model_256_SHA = '983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a'
model_512_SHA = '9c111ab89e214862b76e1fa6a1b3f1d329b1a88281885943d2cdbe357ad57648'
model_secondary_SHA = '983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a'
model_256_link = 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'
model_512_link = 'https://the-eye.eu/public/AI/models/512x512_diffusion_unconditional_ImageNet/512x512_diffusion_uncond_finetune_008100.pt'
model_secondary_link = 'https://v-diffusion.s3.us-west-2.amazonaws.com/secondary_model_imagenet_2.pth'
model_256_link_fb = 'https://www.dropbox.com/s/9tqnqo930mpnpcn/256x256_diffusion_uncond.pt'
model_512_link_fb = 'https://huggingface.co/lowlevelware/512x512_diffusion_unconditional_ImageNet/resolve/main/512x512_diffusion_uncond_finetune_008100.pt'
model_secondary_link_fb = 'https://the-eye.eu/public/AI/models/v-diffusion/secondary_model_imagenet_2.pth'
model_256_path = f'{model_path}/256x256_diffusion_uncond.pt'
model_512_path = f'{model_path}/512x512_diffusion_uncond_finetune_008100.pt'
model_secondary_path = f'{model_path}/secondary_model_imagenet_2.pth'
if fallback:
model_256_link = model_256_link_fb
model_512_link = model_512_link_fb
model_secondary_link = model_secondary_link_fb
# Download the diffusion model
if diffusion_model == '256x256_diffusion_uncond':
if os.path.exists(model_256_path) and check_model_SHA:
print('Checking 256 Diffusion File')
with open(model_256_path,"rb") as f:
bytes = f.read()
hash = hashlib.sha256(bytes).hexdigest();
if hash == model_256_SHA:
print('256 Model SHA matches')
model_256_downloaded = True
else:
print("256 Model SHA doesn't match, redownloading...")
wget(model_256_link, model_path)
if os.path.exists(model_256_path):
model_256_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,use_secondary_model,True)
elif os.path.exists(model_256_path) and not check_model_SHA or model_256_downloaded == True:
print('256 Model already downloaded, check check_model_SHA if the file is corrupt')
else:
wget(model_256_link, model_path)
if os.path.exists(model_256_path):
model_256_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,True)
elif diffusion_model == '512x512_diffusion_uncond_finetune_008100':
if os.path.exists(model_512_path) and check_model_SHA:
print('Checking 512 Diffusion File')
with open(model_512_path,"rb") as f:
bytes = f.read()
hash = hashlib.sha256(bytes).hexdigest();
if hash == model_512_SHA:
print('512 Model SHA matches')
if os.path.exists(model_512_path):
model_512_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,use_secondary_model,True)
else:
print("512 Model SHA doesn't match, redownloading...")
wget(model_512_link, model_path)
if os.path.exists(model_512_path):
model_512_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,use_secondary_model,True)
elif os.path.exists(model_512_path) and not check_model_SHA or model_512_downloaded:
print('512 Model already downloaded, check check_model_SHA if the file is corrupt')
else:
wget(model_512_link, model_path)
model_512_downloaded = True
# Download the secondary diffusion model v2
if use_secondary_model:
if os.path.exists(model_secondary_path) and check_model_SHA:
print('Checking Secondary Diffusion File')
with open(model_secondary_path,"rb") as f:
bytes = f.read()
hash = hashlib.sha256(bytes).hexdigest();
if hash == model_secondary_SHA:
print('Secondary Model SHA matches')
model_secondary_downloaded = True
else:
print("Secondary Model SHA doesn't match, redownloading...")
wget(model_secondary_link, model_path)
if os.path.exists(model_secondary_path):
model_secondary_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,use_secondary_model,True)
elif os.path.exists(model_secondary_path) and not check_model_SHA or model_secondary_downloaded:
print('Secondary Model already downloaded, check check_model_SHA if the file is corrupt')
else:
wget(model_secondary_link, model_path)
if os.path.exists(model_secondary_path):
model_secondary_downloaded = True
else:
print('First URL Failed using FallBack')
download_models(diffusion_model,use_secondary_model,True)
download_models(diffusion_model,use_secondary_model)
model_config = model_and_diffusion_defaults()
if diffusion_model == '512x512_diffusion_uncond_finetune_008100':
model_config.update({
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'diffusion_steps': 1000, #No need to edit this, it is taken care of later.
'rescale_timesteps': True,
'timestep_respacing': 250, #No need to edit this, it is taken care of later.
'image_size': 512,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 256,
'num_head_channels': 64,
'num_res_blocks': 2,
'resblock_updown': True,
'use_checkpoint': use_checkpoint,
'use_fp16': not useCPU,
'use_scale_shift_norm': True,
})
elif diffusion_model == '256x256_diffusion_uncond':
model_config.update({
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'diffusion_steps': 1000, #No need to edit this, it is taken care of later.
'rescale_timesteps': True,
'timestep_respacing': 250, #No need to edit this, it is taken care of later.
'image_size': 256,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 256,
'num_head_channels': 64,
'num_res_blocks': 2,
'resblock_updown': True,
'use_checkpoint': use_checkpoint,
'use_fp16': not useCPU,
'use_scale_shift_norm': True,
})
model_default = model_config['image_size']
if use_secondary_model:
secondary_model = SecondaryDiffusionImageNet2()
secondary_model.load_state_dict(torch.load(f'{model_path}/secondary_model_imagenet_2.pth', map_location='cpu'))
secondary_model.eval().requires_grad_(False).to(device)
clip_models = []
if ViTB32: clip_models.append(clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTB16: clip_models.append(clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTL14: clip_models.append(clip.load('ViT-L/14', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTL14_336px: clip_models.append(clip.load('ViT-L/14@336px', jit=False)[0].eval().requires_grad_(False).to(device))
if RN50: clip_models.append(clip.load('RN50', jit=False)[0].eval().requires_grad_(False).to(device))
if RN50x4: clip_models.append(clip.load('RN50x4', jit=False)[0].eval().requires_grad_(False).to(device))
if RN50x16: clip_models.append(clip.load('RN50x16', jit=False)[0].eval().requires_grad_(False).to(device))
if RN50x64: clip_models.append(clip.load('RN50x64', jit=False)[0].eval().requires_grad_(False).to(device))
if RN101: clip_models.append(clip.load('RN101', jit=False)[0].eval().requires_grad_(False).to(device))
normalize = T.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
lpips_model = lpips.LPIPS(net='vgg').to(device)
# %%
# !! {"metadata":{
# !! "id": "CustModelTop"
# !! }}
"""
# Custom model settings
Modify in accordance with your training settings and run the cell
"""
# %%
# !! {"metadata":{
# !! "id": "CustModel"
# !! }}
#@markdown ####**Custom Model Settings:**
if diffusion_model == 'custom':
model_config.update({
'attention_resolutions': '16',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': 'ddim100',
'image_size': 256,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 128,
'num_heads': 1,
'num_res_blocks': 2,
'use_checkpoint': use_checkpoint,
'use_fp16': True,
'use_scale_shift_norm': False,
})
# %%
# !! {"metadata":{
# !! "id": "SettingsTop"
# !! }}
"""
# 3. Settings
"""
# %%
# !! {"metadata":{
# !! "id": "BasicSettings"
# !! }}
#@markdown ####**Basic Settings:**
batch_name = conf.get("all", "batch_name") #'TimeToDisco' #@param{type: 'string'}
steps = int(conf.get("all", "steps")) #250 #@param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true}
width_height = [int(conf.get("all", "width")), int(conf.get("all", "height"))] #@param{type: 'raw'}
clip_guidance_scale = float(conf.get("all", "clip_guidance_scale")) #@param{type: 'number'}
tv_scale = float(conf.get("all", "tv_scale")) #350#@param{type: 'number'}
range_scale = float(conf.get("all", "range_scale"))#150#@param{type: 'number'}
sat_scale = float(conf.get("all", "sat_scale")) #100#@param{type: 'number'}
cutn_batches = int(conf.get("all", "cutn_batches"))#8#@param{type: 'number'}
skip_augs = False#@param{type: 'boolean'}
#@markdown ####**Video Init Basic Settings:**
video_init_steps = 100 #@param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true}
video_init_clip_guidance_scale = 1000 #@param{type: 'number'}
video_init_tv_scale = 0.1#@param{type: 'number'}
video_init_range_scale = 150#@param{type: 'number'}
video_init_sat_scale = 300#@param{type: 'number'}
video_init_cutn_batches = 4#@param{type: 'number'}
video_init_skip_steps = 50 #@param{type: 'integer'}
#@markdown ---
#@markdown ####**Init Image Settings:**
init_image = conf.get("all","init_image") #"/home/hannu/Pictures/2022/latest-540ed.png" #@param{type: 'string'}
init_scale = float(conf.get("all","init_scale")) #@param{type: 'integer'}
skip_steps = int(conf.get("all","skip_steps")) #@param{type: 'integer'}
#@markdown *Make sure you set skip_steps to ~50% of your steps if you want to use an init image.*
#Get corrected sizes
side_x = (width_height[0]//64)*64;
side_y = (width_height[1]//64)*64;
if side_x != width_height[0] or side_y != width_height[1]:
print(f'Changing output size to {side_x}x{side_y}. Dimensions must by multiples of 64.')
#Make folder for batch
batchFolder = f'{outDirPath}/{batch_name}'
createPath(batchFolder)
# %%
# !! {"metadata":{
# !! "id": "AnimSetTop"
# !! }}
"""
### Animation Settings
"""
# %%
# !! {"metadata":{
# !! "id": "AnimSettings"
# !! }}
#@markdown ####**Animation Mode:**
animation_mode = 'None' #@param ['None', '2D', '3D', 'Video Input'] {type:'string'}
#@markdown *For animation, you probably want to turn `cutn_batches` to 1 to make it quicker.*
#@markdown ---
#@markdown ####**Video Input Settings:**
'''
if is_colab:
video_init_path = "/content/drive/MyDrive/init.mp4" #@param {type: 'string'}
else:
video_init_path = "init.mp4" #@param {type: 'string'}
extract_nth_frame = 2 #@param {type: 'number'}
persistent_frame_output_in_batch_folder = True #@param {type: 'boolean'}
video_init_seed_continuity = False #@param {type: 'boolean'}
#@markdown #####**Video Optical Flow Settings:**
video_init_flow_warp = True #@param {type: 'boolean'}
# Call optical flow from video frames and warp prev frame with flow
video_init_flow_blend = 0.999#@param {type: 'number'} #0 - take next frame, 1 - take prev warped frame
video_init_check_consistency = False #Insert param here when ready
video_init_blend_mode = "optical flow" #@param ['None', 'linear', 'optical flow']
# Call optical flow from video frames and warp prev frame with flow
if animation_mode == "Video Input":
if persistent_frame_output_in_batch_folder or (not is_colab): #suggested by Chris the Wizard#8082 at discord
videoFramesFolder = f'{batchFolder}/videoFrames'
else:
videoFramesFolder = f'/content/videoFrames'
createPath(videoFramesFolder)
print(f"Exporting Video Frames (1 every {extract_nth_frame})...")
try:
for f in pathlib.Path(f'{videoFramesFolder}').glob('*.jpg'):
f.unlink()
except:
print('')
vf = f'select=not(mod(n\,{extract_nth_frame}))'
if os.path.exists(video_init_path):
subprocess.run(['ffmpeg', '-i', f'{video_init_path}', '-vf', f'{vf}', '-vsync', 'vfr', '-q:v', '2', '-loglevel', 'error', '-stats', f'{videoFramesFolder}/%04d.jpg'], stdout=subprocess.PIPE).stdout.decode('utf-8')
else:
print(f'\nWARNING!\n\nVideo not found: {video_init_path}.\nPlease check your video path.\n')
#!ffmpeg -i {video_init_path} -vf {vf} -vsync vfr -q:v 2 -loglevel error -stats {videoFramesFolder}/%04d.jpg
'''
#@markdown ---
#@markdown ####**2D Animation Settings:**
#@markdown `zoom` is a multiplier of dimensions, 1 is no zoom.
#@markdown All rotations are provided in degrees.
key_frames = True #@param {type:"boolean"}
max_frames = 1 #@param {type:"number"}
if animation_mode == "Video Input":
max_frames = len(glob(f'{videoFramesFolder}/*.jpg'))
interp_spline = 'Linear' #Do not change, currently will not look good. param ['Linear','Quadratic','Cubic']{type:"string"}
angle = "0:(0)"#@param {type:"string"}
zoom = "0: (1), 10: (1.05)"#@param {type:"string"}
translation_x = "0: (0)"#@param {type:"string"}
translation_y = "0: (0)"#@param {type:"string"}
translation_z = "0: (10.0)"#@param {type:"string"}
rotation_3d_x = "0: (0)"#@param {type:"string"}
rotation_3d_y = "0: (0)"#@param {type:"string"}
rotation_3d_z = "0: (0)"#@param {type:"string"}
midas_depth_model = "dpt_large"#@param {type:"string"}
midas_weight = 0.3#@param {type:"number"}
near_plane = 200#@param {type:"number"}
far_plane = 10000#@param {type:"number"}
fov = 40#@param {type:"number"}
padding_mode = 'border'#@param {type:"string"}
sampling_mode = 'bicubic'#@param {type:"string"}
#======= TURBO MODE
#@markdown ---
#@markdown ####**Turbo Mode (3D anim only):**
#@markdown (Starts after frame 10,) skips diffusion steps and just uses depth map to warp images for skipped frames.
#@markdown Speeds up rendering by 2x-4x, and may improve image coherence between frames.
#@markdown For different settings tuned for Turbo Mode, refer to the original Disco-Turbo Github: https://github.com/zippy731/disco-diffusion-turbo
turbo_mode = False #@param {type:"boolean"}
turbo_steps = "3" #@param ["2","3","4","5","6"] {type:"string"}
turbo_preroll = 10 # frames
#insist turbo be used only w 3d anim.
if turbo_mode and animation_mode != '3D':
print('=====')
print('Turbo mode only available with 3D animations. Disabling Turbo.')
print('=====')
turbo_mode = False
#@markdown ---
#@markdown ####**Coherency Settings:**
#@markdown `frame_scale` tries to guide the new frame to looking like the old one. A good default is 1500.
frames_scale = 1500 #@param{type: 'integer'}
#@markdown `frame_skip_steps` will blur the previous frame - higher values will flicker less but struggle to add enough new detail to zoom into.
frames_skip_steps = '60%' #@param ['40%', '50%', '60%', '70%', '80%'] {type: 'string'}
#@markdown ####**Video Init Coherency Settings:**
#@markdown `frame_scale` tries to guide the new frame to looking like the old one. A good default is 1500.
video_init_frames_scale = 15000 #@param{type: 'integer'}
#@markdown `frame_skip_steps` will blur the previous frame - higher values will flicker less but struggle to add enough new detail to zoom into.
video_init_frames_skip_steps = '70%' #@param ['40%', '50%', '60%', '70%', '80%'] {type: 'string'}
#======= VR MODE
#@markdown ---
#@markdown ####**VR Mode (3D anim only):**
#@markdown Enables stereo rendering of left/right eye views (supporting Turbo) which use a different (fish-eye) camera projection matrix.
#@markdown Note the images you're prompting will work better if they have some inherent wide-angle aspect
#@markdown The generated images will need to be combined into left/right videos. These can then be stitched into the VR180 format.
#@markdown Google made the VR180 Creator tool but subsequently stopped supporting it. It's available for download in a few places including https://www.patrickgrunwald.de/vr180-creator-download
#@markdown The tool is not only good for stitching (videos and photos) but also for adding the correct metadata into existing videos, which is needed for services like YouTube to identify the format correctly.
#@markdown Watching YouTube VR videos isn't necessarily the easiest depending on your headset. For instance Oculus have a dedicated media studio and store which makes the files easier to access on a Quest https://creator.oculus.com/manage/mediastudio/
#@markdown
#@markdown The command to get ffmpeg to concat your frames for each eye is in the form: `ffmpeg -framerate 15 -i frame_%4d_l.png l.mp4` (repeat for r)
vr_mode = False #@param {type:"boolean"}
#@markdown `vr_eye_angle` is the y-axis rotation of the eyes towards the center
vr_eye_angle = 0.5 #@param{type:"number"}
#@markdown interpupillary distance (between the eyes)
vr_ipd = 5.0 #@param{type:"number"}
#insist VR be used only w 3d anim.
if vr_mode and animation_mode != '3D':
print('=====')
print('VR mode only available with 3D animations. Disabling VR.')
print('=====')
vr_mode = False
def parse_key_frames(string, prompt_parser=None):
"""Given a string representing frame numbers paired with parameter values at that frame,
return a dictionary with the frame numbers as keys and the parameter values as the values.
Parameters
----------
string: string
Frame numbers paired with parameter values at that frame number, in the format
'framenumber1: (parametervalues1), framenumber2: (parametervalues2), ...'
prompt_parser: function or None, optional
If provided, prompt_parser will be applied to each string of parameter values.
Returns
-------
dict
Frame numbers as keys, parameter values at that frame number as values
Raises
------
RuntimeError
If the input string does not match the expected format.
Examples
--------
>>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)")
{10: 'Apple: 1| Orange: 0', 20: 'Apple: 0| Orange: 1| Peach: 1'}
>>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)", prompt_parser=lambda x: x.lower()))
{10: 'apple: 1| orange: 0', 20: 'apple: 0| orange: 1| peach: 1'}
"""
import re
pattern = r'((?P<frame>[0-9]+):[\s]*[\(](?P<param>[\S\s]*?)[\)])'
frames = dict()
for match_object in re.finditer(pattern, string):
frame = int(match_object.groupdict()['frame'])
param = match_object.groupdict()['param']
if prompt_parser:
frames[frame] = prompt_parser(param)
else:
frames[frame] = param
if frames == {} and len(string) != 0:
raise RuntimeError('Key Frame string not correctly formatted')
return frames
def get_inbetweens(key_frames, integer=False):
"""Given a dict with frame numbers as keys and a parameter value as values,
return a pandas Series containing the value of the parameter at every frame from 0 to max_frames.
Any values not provided in the input dict are calculated by linear interpolation between
the values of the previous and next provided frames. If there is no previous provided frame, then
the value is equal to the value of the next provided frame, or if there is no next provided frame,
then the value is equal to the value of the previous provided frame. If no frames are provided,
all frame values are NaN.
Parameters
----------
key_frames: dict
A dict with integer frame numbers as keys and numerical values of a particular parameter as values.
integer: Bool, optional
If True, the values of the output series are converted to integers.
Otherwise, the values are floats.
Returns
-------
pd.Series
A Series with length max_frames representing the parameter values for each frame.
Examples
--------
>>> max_frames = 5
>>> get_inbetweens({1: 5, 3: 6})
0 5.0
1 5.0
2 5.5
3 6.0
4 6.0
dtype: float64
>>> get_inbetweens({1: 5, 3: 6}, integer=True)
0 5
1 5
2 5
3 6
4 6
dtype: int64
"""
key_frame_series = pd.Series([np.nan for a in range(max_frames)])
for i, value in key_frames.items():
key_frame_series[i] = value
key_frame_series = key_frame_series.astype(float)
interp_method = interp_spline
if interp_method == 'Cubic' and len(key_frames.items()) <=3:
interp_method = 'Quadratic'
if interp_method == 'Quadratic' and len(key_frames.items()) <= 2:
interp_method = 'Linear'
key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()]
key_frame_series[max_frames-1] = key_frame_series[key_frame_series.last_valid_index()]
# key_frame_series = key_frame_series.interpolate(method=intrp_method,order=1, limit_direction='both')
key_frame_series = key_frame_series.interpolate(method=interp_method.lower(),limit_direction='both')
if integer:
return key_frame_series.astype(int)
return key_frame_series
def split_prompts(prompts):
prompt_series = pd.Series([np.nan for a in range(max_frames)])
for i, prompt in prompts.items():
prompt_series[i] = prompt
# prompt_series = prompt_series.astype(str)
prompt_series = prompt_series.ffill().bfill()
return prompt_series
'''
if key_frames:
try:
angle_series = get_inbetweens(parse_key_frames(angle))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `angle` correctly for key frames.\n"
"Attempting to interpret `angle` as "
f'"0: ({angle})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
angle = f"0: ({angle})"
angle_series = get_inbetweens(parse_key_frames(angle))
try:
zoom_series = get_inbetweens(parse_key_frames(zoom))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `zoom` correctly for key frames.\n"
"Attempting to interpret `zoom` as "
f'"0: ({zoom})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
zoom = f"0: ({zoom})"
zoom_series = get_inbetweens(parse_key_frames(zoom))
try:
translation_x_series = get_inbetweens(parse_key_frames(translation_x))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `translation_x` correctly for key frames.\n"
"Attempting to interpret `translation_x` as "
f'"0: ({translation_x})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
translation_x = f"0: ({translation_x})"
translation_x_series = get_inbetweens(parse_key_frames(translation_x))
try:
translation_y_series = get_inbetweens(parse_key_frames(translation_y))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `translation_y` correctly for key frames.\n"
"Attempting to interpret `translation_y` as "
f'"0: ({translation_y})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
translation_y = f"0: ({translation_y})"
translation_y_series = get_inbetweens(parse_key_frames(translation_y))
try:
translation_z_series = get_inbetweens(parse_key_frames(translation_z))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `translation_z` correctly for key frames.\n"
"Attempting to interpret `translation_z` as "
f'"0: ({translation_z})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
translation_z = f"0: ({translation_z})"
translation_z_series = get_inbetweens(parse_key_frames(translation_z))
try:
rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `rotation_3d_x` correctly for key frames.\n"
"Attempting to interpret `rotation_3d_x` as "
f'"0: ({rotation_3d_x})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
rotation_3d_x = f"0: ({rotation_3d_x})"
rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x))
try:
rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `rotation_3d_y` correctly for key frames.\n"
"Attempting to interpret `rotation_3d_y` as "
f'"0: ({rotation_3d_y})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
rotation_3d_y = f"0: ({rotation_3d_y})"
rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y))
try:
rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z))
except RuntimeError as e:
print(
"WARNING: You have selected to use key frames, but you have not "
"formatted `rotation_3d_z` correctly for key frames.\n"
"Attempting to interpret `rotation_3d_z` as "
f'"0: ({rotation_3d_z})"\n'
"Please read the instructions to find out how to use key frames "
"correctly.\n"
)
rotation_3d_z = f"0: ({rotation_3d_z})"
rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z))
else:
print(angle, zoom)
angle = float(angle)
zoom = float(zoom)
translation_x = float(translation_x)
translation_y = float(translation_y)
translation_z = float(translation_z)
rotation_3d_x = float(rotation_3d_x)
rotation_3d_y = float(rotation_3d_y)
rotation_3d_z = float(rotation_3d_z)
'''
# %%
# !! {"metadata":{
# !! "id": "InstallRAFT"
# !! }}
#@title Install RAFT for Video input animation mode only
#@markdown Run once per session. Doesn't download again if model path exists.
#@markdown Use force download to reload raft models if needed
force_download = False #@param {type:'boolean'}
'''
if animation_mode == 'Video Input':
try:
from raft import RAFT
except:
if not os.path.exists(os.path.join(PROJECT_DIR, 'RAFT')):
gitclone('https://github.com/princeton-vl/RAFT', os.path.join(PROJECT_DIR, 'RAFT'))
sys.path.append(f'{PROJECT_DIR}/RAFT')
if (not (os.path.exists(f'{root_path}/RAFT/models'))) or force_download:
createPath(f'{root_path}/RAFT')
os.chdir(f'{root_path}/RAFT')
sub_p_res = subprocess.run(['bash', f'{PROJECT_DIR}/RAFT/download_models.sh'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(sub_p_res)
os.chdir(PROJECT_DIR)
# %%
# !! {"metadata":{
# !! "id": "FlowFns1"
# !! }}
#@title Define optical flow functions for Video input animation mode only
if animation_mode == 'Video Input':
in_path = videoFramesFolder
flo_folder = f'{in_path}/out_flo_fwd'
path = f'{PROJECT_DIR}/RAFT/core'
import sys
sys.path.append(f'{PROJECT_DIR}/RAFT/core')
os.chdir(f'{PROJECT_DIR}/RAFT/core')
print(os.getcwd())
print("Renaming RAFT core's utils.utils to raftutils.utils (to avoid a naming conflict with AdaBins)")
if not os.path.exists(f'{PROJECT_DIR}/RAFT/core/raftutils'):
os.rename(f'{PROJECT_DIR}/RAFT/core/utils', f'{PROJECT_DIR}/RAFT/core/raftutils')
sub_p_res = subprocess.run(['sed', '-i', 's/from utils.utils/from raftutils.utils/g', f'{PROJECT_DIR}/RAFT/core/corr.py'], stdout=subprocess.PIPE).stdout.decode('utf-8')
sub_p_res = subprocess.run(['sed', '-i', 's/from utils.utils/from raftutils.utils/g', f'{PROJECT_DIR}/RAFT/core/raft.py'], stdout=subprocess.PIPE).stdout.decode('utf-8')
from raftutils.utils import InputPadder
from raft import RAFT
from raftutils import flow_viz
import numpy as np
import argparse, PIL, cv2
from PIL import Image
from tqdm.notebook import tqdm
from glob import glob
import torch
args2 = argparse.Namespace()
args2.small = False
args2.mixed_precision = True
TAG_CHAR = np.array([202021.25], np.float32)
def writeFlow(filename,uv,v=None):
"""
https://github.com/NVIDIA/flownet2-pytorch/blob/master/utils/flow_utils.py
Copyright 2017 NVIDIA CORPORATION
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def load_img(img, size):
img = Image.open(img).convert('RGB').resize(size)
return torch.from_numpy(np.array(img)).permute(2,0,1).float()[None,...].cuda()
def get_flow(frame1, frame2, model, iters=20):
padder = InputPadder(frame1.shape)
frame1, frame2 = padder.pad(frame1, frame2)
_, flow12 = model(frame1, frame2, iters=iters, test_mode=True)
flow12 = flow12[0].permute(1, 2, 0).detach().cpu().numpy()
return flow12
def warp_flow(img, flow):
h, w = flow.shape[:2]
flow = flow.copy()
flow[:, :, 0] += np.arange(w)
flow[:, :, 1] += np.arange(h)[:, np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
def makeEven(_x):
return _x if (_x % 2 == 0) else _x+1
def fit(img,maxsize=512):
maxdim = max(*img.size)
if maxdim>maxsize:
# if True:
ratio = maxsize/maxdim
x,y = img.size
size = (makeEven(int(x*ratio)),makeEven(int(y*ratio)))
img = img.resize(size)
return img
def warp(frame1, frame2, flo_path, blend=0.5, weights_path=None):
flow21 = np.load(flo_path)
frame1pil = np.array(frame1.convert('RGB').resize((flow21.shape[1],flow21.shape[0])))
frame1_warped21 = warp_flow(frame1pil, flow21)
# frame2pil = frame1pil
frame2pil = np.array(frame2.convert('RGB').resize((flow21.shape[1],flow21.shape[0])))
if weights_path:
# TBD
pass
else:
blended_w = frame2pil*(1-blend) + frame1_warped21*(blend)
return PIL.Image.fromarray(blended_w.astype('uint8'))
in_path = videoFramesFolder
flo_folder = f'{in_path}/out_flo_fwd'
temp_flo = in_path+'/temp_flo'
flo_fwd_folder = in_path+'/out_flo_fwd'
# TBD flow backwards!
os.chdir(PROJECT_DIR)
# %%
# !! {"metadata":{
# !! "id": "FlowFns2"
# !! }}
#@title Generate optical flow and consistency maps
#@markdown Run once per init video
if animation_mode == "Video Input":
import gc
force_flow_generation = False #@param {type:'boolean'}
in_path = videoFramesFolder
flo_folder = f'{in_path}/out_flo_fwd'
if not video_init_flow_warp:
print('video_init_flow_warp not set, skipping')
if (animation_mode == 'Video Input') and (video_init_flow_warp):
flows = glob(flo_folder+'/*.*')
if (len(flows)>0) and not force_flow_generation:
print(f'Skipping flow generation:\nFound {len(flows)} existing flow files in current working folder: {flo_folder}.\nIf you wish to generate new flow files, check force_flow_generation and run this cell again.')
if (len(flows)==0) or force_flow_generation:
frames = sorted(glob(in_path+'/*.*'));
if len(frames)<2:
print(f'WARNING!\nCannot create flow maps: Found {len(frames)} frames extracted from your video input.\nPlease check your video path.')
if len(frames)>=2:
raft_model = torch.nn.DataParallel(RAFT(args2))
raft_model.load_state_dict(torch.load(f'{root_path}/RAFT/models/raft-things.pth'))
raft_model = raft_model.module.cuda().eval()
for f in pathlib.Path(f'{flo_fwd_folder}').glob('*.*'):
f.unlink()
temp_flo = in_path+'/temp_flo'
flo_fwd_folder = in_path+'/out_flo_fwd'
createPath(flo_fwd_folder)
createPath(temp_flo)
# TBD Call out to a consistency checker?
framecount = 0
for frame1, frame2 in tqdm(zip(frames[:-1], frames[1:]), total=len(frames)-1):
out_flow21_fn = f"{flo_fwd_folder}/{frame1.split('/')[-1]}"
frame1 = load_img(frame1, width_height)
frame2 = load_img(frame2, width_height)
flow21 = get_flow(frame2, frame1, raft_model)
np.save(out_flow21_fn, flow21)
if video_init_check_consistency:
# TBD
pass
del raft_model
gc.collect()
'''
# %%
# !! {"metadata":{
# !! "id": "ExtraSetTop"
# !! }}
"""
### Extra Settings
Partial Saves, Advanced Settings, Cutn Scheduling
"""
# %%
# !! {"metadata":{
# !! "id": "ExtraSettings"
# !! }}
#@markdown ####**Saving:**
intermediate_saves = int(conf.get("all","save_every")) #@param{type: 'raw'}
intermediates_in_subfolder = True #@param{type: 'boolean'}
#@markdown Intermediate steps will save a copy at your specified intervals. You can either format it as a single integer or a list of specific steps
#@markdown A value of `2` will save a copy at 33% and 66%. 0 will save none.
#@markdown A value of `[5, 9, 34, 45]` will save at steps 5, 9, 34, and 45. (Make sure to include the brackets)
if type(intermediate_saves) is not list:
if intermediate_saves:
steps_per_checkpoint = math.floor((steps - skip_steps - 1) // (intermediate_saves+1))
steps_per_checkpoint = steps_per_checkpoint if steps_per_checkpoint > 0 else 1
print(f'Will save every {steps_per_checkpoint} steps')
else:
steps_per_checkpoint = steps+10
else:
steps_per_checkpoint = None
if intermediate_saves and intermediates_in_subfolder is True:
partialFolder = f'{batchFolder}/partials'
createPath(partialFolder)
#@markdown ---
#@markdown ####**Advanced Settings:**
#@markdown *There are a few extra advanced settings available if you double click this cell.*
#@markdown *Perlin init will replace your init, so uncheck if using one.*
perlin_init = False #@param{type: 'boolean'}
perlin_mode = 'mixed' #@param ['mixed', 'color', 'gray']
set_seed = 'random_seed' #@param{type: 'string'}
eta = 0.8#@param{type: 'number'}
clamp_grad = True #@param{type: 'boolean'}
clamp_max = 0.05 #@param{type: 'number'}
### EXTRA ADVANCED SETTINGS:
randomize_class = True
clip_denoised = False
fuzzy_prompt = False
rand_mag = 0.05
#@markdown ---
#@markdown ####**Cutn Scheduling:**
#@markdown Format: `[40]*400+[20]*600` = 40 cuts for the first 400 /1000 steps, then 20 for the last 600/1000
#@markdown cut_overview and cut_innercut are cumulative for total cutn on any given step. Overview cuts see the entire image and are good for early structure, innercuts are your standard cutn.
cut_overview = "[12]*400+[4]*600" #@param {type: 'string'}
cut_innercut ="[4]*400+[12]*600"#@param {type: 'string'}
cut_ic_pow = 1#@param {type: 'number'}
cut_icgray_p = "[0.2]*400+[0]*600"#@param {type: 'string'}
#@markdown ---
#@markdown ####**Transformation Settings:**
use_vertical_symmetry = False #@param {type:"boolean"}
use_horizontal_symmetry = False #@param {type:"boolean"}
transformation_percent = [0.09] #@param
# %%
# !! {"metadata":{
# !! "id": "PromptsTop"
# !! }}
"""
### Prompts
`animation_mode: None` will only use the first set. `animation_mode: 2D / Video` will run through them per the set frames and hold on the last one.
"""
# %%
# !! {"metadata":{
# !! "id": "Prompts"
# !! }}
text_prompts = {"0" : conf.get("all", "text_prompts").split("\n")}
print(text_prompts)
maskp_in = conf.get("all", "mask_prompts").split("\n")
mn = 0
current = []
mask_prompts = []
for mp in maskp_in:
mp = mp.strip()
if len(mp) == 0:
continue
if mp == "*":
mask_prompts.append(current)
current = []
mn += 1
else:
current.append(mp)
mask_prompts.append(current)
print(mask_prompts)
image_prompts = conf.get("all", "image_prompts")
mask_images = conf.get("all", "mask_images").split("\n")
print(mask_images)
#exit()
balance = float(conf.get("all", "balance")) # 0 = text prompt only 1 = mask prompt only
# %%
# !! {"metadata":{
# !! "id": "DiffuseTop"
# !! }}
#"""
# 4. Diffuse!
#"""
# %%
# !! {"metadata":{
# !! "id": "DoTheRun"
# !! }}
#@title Do the Run!
#@markdown `n_batches` ignored with animation modes.
display_rate = 20 #@param{type: 'number'}
n_batches = int(conf.get("all","n_batches")) #@param{type: 'number'}
if animation_mode == 'Video Input':
steps = video_init_steps
#Update Model Settings
timestep_respacing = f'ddim{steps}'
diffusion_steps = (1000//steps)*steps if steps < 1000 else steps
model_config.update({
'timestep_respacing': timestep_respacing,
'diffusion_steps': diffusion_steps,
})
batch_size = 1
def move_files(start_num, end_num, old_folder, new_folder):
for i in range(start_num, end_num):
old_file = old_folder + f'/{batch_name}({batchNum})_{i:04}.png'
new_file = new_folder + f'/{batch_name}({batchNum})_{i:04}.png'
os.rename(old_file, new_file)
#@markdown ---
resume_run = False #@param{type: 'boolean'}
run_to_resume = 'latest' #@param{type: 'string'}
resume_from_frame = 'latest' #@param{type: 'string'}
retain_overwritten_frames = False #@param{type: 'boolean'}
if retain_overwritten_frames:
retainFolder = f'{batchFolder}/retained'
createPath(retainFolder)
skip_step_ratio = int(frames_skip_steps.rstrip("%")) / 100
calc_frames_skip_steps = math.floor(steps * skip_step_ratio)
if animation_mode == 'Video Input':
frames = sorted(glob(in_path+'/*.*'));
if len(frames)==0:
sys.exit("ERROR: 0 frames found.\nPlease check your video input path and rerun the video settings cell.")
flows = glob(flo_folder+'/*.*')
if (len(flows)==0) and video_init_flow_warp:
sys.exit("ERROR: 0 flow files found.\nPlease rerun the flow generation cell.")
if steps <= calc_frames_skip_steps:
sys.exit("ERROR: You can't skip more steps than your total steps")
if resume_run:
if run_to_resume == 'latest':
try:
batchNum
except:
batchNum = len(glob(f"{batchFolder}/{batch_name}(*)_settings.txt"))-1
else:
batchNum = int(run_to_resume)
if resume_from_frame == 'latest':
start_frame = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png"))
if animation_mode != '3D' and turbo_mode == True and start_frame > turbo_preroll and start_frame % int(turbo_steps) != 0:
start_frame = start_frame - (start_frame % int(turbo_steps))
else:
start_frame = int(resume_from_frame)+1
if animation_mode != '3D' and turbo_mode == True and start_frame > turbo_preroll and start_frame % int(turbo_steps) != 0:
start_frame = start_frame - (start_frame % int(turbo_steps))
if retain_overwritten_frames is True:
existing_frames = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png"))
frames_to_save = existing_frames - start_frame
print(f'Moving {frames_to_save} frames to the Retained folder')
move_files(start_frame, existing_frames, batchFolder, retainFolder)
else:
start_frame = 0
batchNum = len(glob(batchFolder+"/*.txt"))
while os.path.isfile(f"{batchFolder}/{batch_name}({batchNum})_settings.txt") or os.path.isfile(f"{batchFolder}/{batch_name}-{batchNum}_settings.txt"):
batchNum += 1
print(f'Starting Run: {batch_name}({batchNum}) at frame {start_frame}')
if set_seed == 'random_seed':
random.seed()
seed = random.randint(0, 2**32)
# print(f'Using seed: {seed}')
else:
seed = int(set_seed)
args = {
'batchNum': batchNum,
'prompts_series':split_prompts(text_prompts) if text_prompts else None,
'image_prompts_series':split_prompts(image_prompts) if image_prompts else None,
'seed': seed,
'display_rate':display_rate,
'n_batches':n_batches if animation_mode == 'None' else 1,
'batch_size':batch_size,
'batch_name': batch_name,
'steps': steps,
'diffusion_sampling_mode': diffusion_sampling_mode,
'width_height': width_height,
'clip_guidance_scale': clip_guidance_scale,
'tv_scale': tv_scale,
'range_scale': range_scale,
'sat_scale': sat_scale,
'cutn_batches': cutn_batches,
'init_image': init_image,
'init_scale': init_scale,
'skip_steps': skip_steps,
'side_x': side_x,
'side_y': side_y,
'timestep_respacing': timestep_respacing,
'diffusion_steps': diffusion_steps,
'animation_mode': animation_mode,
#'video_init_path': video_init_path,
#'extract_nth_frame': extract_nth_frame,
#'video_init_seed_continuity': video_init_seed_continuity,
'key_frames': key_frames,
'max_frames': max_frames if animation_mode != "None" else 1,
'interp_spline': interp_spline,
'start_frame': start_frame,
#'angle': angle,
#'zoom': zoom,
#'translation_x': translation_x,
#'translation_y': translation_y,
#'translation_z': translation_z,
#'rotation_3d_x': rotation_3d_x,
#'rotation_3d_y': rotation_3d_y,
#'rotation_3d_z': rotation_3d_z,
#'midas_depth_model': midas_depth_model,
#'midas_weight': midas_weight,
#'near_plane': near_plane,
#'far_plane': far_plane,
#'fov': fov,
#'padding_mode': padding_mode,
#'sampling_mode': sampling_mode,
#'angle_series':angle_series,
#'zoom_series':zoom_series,
#'translation_x_series':translation_x_series,
#'translation_y_series':translation_y_series,
#'translation_z_series':translation_z_series,
#'rotation_3d_x_series':rotation_3d_x_series,
#'rotation_3d_y_series':rotation_3d_y_series,
#'rotation_3d_z_series':rotation_3d_z_series,
'frames_scale': frames_scale,
'skip_step_ratio': skip_step_ratio,
'calc_frames_skip_steps': calc_frames_skip_steps,
'text_prompts': text_prompts,
'image_prompts': image_prompts,
'cut_overview': eval(cut_overview),
'cut_innercut': eval(cut_innercut),
'cut_ic_pow': cut_ic_pow,
'cut_icgray_p': eval(cut_icgray_p),
'intermediate_saves': intermediate_saves,
'intermediates_in_subfolder': intermediates_in_subfolder,
'steps_per_checkpoint': steps_per_checkpoint,
'perlin_init': perlin_init,
'perlin_mode': perlin_mode,
'set_seed': set_seed,
'eta': eta,
'clamp_grad': clamp_grad,
'clamp_max': clamp_max,
'skip_augs': skip_augs,
'randomize_class': randomize_class,
'clip_denoised': clip_denoised,
'fuzzy_prompt': fuzzy_prompt,
'rand_mag': rand_mag,
'turbo_mode':turbo_mode,
'turbo_steps':turbo_steps,
'turbo_preroll':turbo_preroll,
'use_vertical_symmetry': use_vertical_symmetry,
'use_horizontal_symmetry': use_horizontal_symmetry,
'transformation_percent': transformation_percent
#video init settings
#'video_init_steps': video_init_steps,
#'video_init_clip_guidance_scale': video_init_clip_guidance_scale,
#'video_init_tv_scale': video_init_tv_scale,
#'video_init_range_scale': video_init_range_scale,
#'video_init_sat_scale': video_init_sat_scale,
#'video_init_cutn_batches': video_init_cutn_batches,
#'video_init_skip_steps': video_init_skip_steps,
#'video_init_frames_scale': video_init_frames_scale,
#'video_init_frames_skip_steps': video_init_frames_skip_steps,
#warp settings
#'video_init_flow_warp':video_init_flow_warp,
#'video_init_flow_blend':video_init_flow_blend,
#'video_init_check_consistency':video_init_check_consistency,
#'video_init_blend_mode':video_init_blend_mode
}
if animation_mode == 'Video Input':
# This isn't great in terms of what will get saved to the settings.. but it should work.
args['steps'] = args['video_init_steps']
args['clip_guidance_scale'] = args['video_init_clip_guidance_scale']
args['tv_scale'] = args['video_init_tv_scale']
args['range_scale'] = args['video_init_range_scale']
args['sat_scale'] = args['video_init_sat_scale']
args['cutn_batches'] = args['video_init_cutn_batches']
args['skip_steps'] = args['video_init_skip_steps']
args['frames_scale'] = args['video_init_frames_scale']
args['frames_skip_steps'] = args['video_init_frames_skip_steps']
args = SimpleNamespace(**args)
print('Prepping model...')
model, diffusion = create_model_and_diffusion(**model_config)
if diffusion_model == 'custom':
model.load_state_dict(torch.load(custom_path, map_location='cpu'))
else:
model.load_state_dict(torch.load(f'{model_path}/{diffusion_model}.pt', map_location='cpu'))
model.requires_grad_(False).eval().to(device)
for name, param in model.named_parameters():
if 'qkv' in name or 'norm' in name or 'proj' in name:
param.requires_grad_()
if model_config['use_fp16']:
model.convert_to_fp16()
gc.collect()
torch.cuda.empty_cache()
try:
do_run()
except KeyboardInterrupt:
pass
finally:
print('Seed used:', seed)
gc.collect()
torch.cuda.empty_cache()
# %%
# !! {"metadata":{
# !! "id": "CreateVidTop"
# !! }}
"""
# 5. Create the video
"""
# %%
# !! {"metadata":{
# !! "id": "CreateVid",
# !! "cellView": "form"
# !! }}
#import PIL
# @title ### **Create video**
#@markdown Video file will save in the same folder as your images.
'''
from tqdm.notebook import trange
skip_video_for_run_all = False #@param {type: 'boolean'}
if animation_mode == 'Video Input':
frames = sorted(glob(in_path+'/*.*'));
if len(frames)==0:
sys.exit("ERROR: 0 frames found.\nPlease check your video input path and rerun the video settings cell.")
flows = glob(flo_folder+'/*.*')
if (len(flows)==0) and video_init_flow_warp:
sys.exit("ERROR: 0 flow files found.\nPlease rerun the flow generation cell.")
if (video_init_blend_mode == "optical flow") and (animation_mode != 'Video Input'):
print('Please enable Video Input mode and generate optical flow maps to use optical flow video_init_blend_mode')
blend = 0.5#@param {type: 'number'}
video_init_check_consistency = False #@param {type: 'boolean'}
if skip_video_for_run_all == True:
print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it')
else:
# import subprocess in case this cell is run without the above cells
import subprocess
from base64 import b64encode
latest_run = batchNum
folder = batch_name #@param
run = latest_run #@param
final_frame = 'final_frame'
init_frame = 1#@param {type:"number"} This is the frame where the video will start
last_frame = final_frame#@param {type:"number"} You can change i to the number of the last frame you want to generate. It will raise an error if that number of frames does not exist.
fps = 12#@param {type:"number"}
# view_video_in_cell = True #@param {type: 'boolean'}
frames = []
# tqdm.write('Generating video...')
if last_frame == 'final_frame':
last_frame = len(glob(batchFolder+f"/{folder}({run})_*.png"))
print(f'Total frames: {last_frame}')
image_path = f"{outDirPath}/{folder}/{folder}({run})_%04d.png"
filepath = f"{outDirPath}/{folder}/{folder}({run}).mp4"
if (video_init_blend_mode == 'optical flow') and (animation_mode == 'Video Input'):
image_path = f"{outDirPath}/{folder}/flow/{folder}({run})_%04d.png"
filepath = f"{outDirPath}/{folder}/{folder}({run})_flow.mp4"
if last_frame == 'final_frame':
last_frame = len(glob(batchFolder+f"/flow/{folder}({run})_*.png"))
flo_out = batchFolder+f"/flow"
createPath(flo_out)
frames_in = sorted(glob(batchFolder+f"/{folder}({run})_*.png"))
shutil.copy(frames_in[0], flo_out)
for i in trange(init_frame, min(len(frames_in), last_frame)):
frame1_path = frames_in[i-1]
frame2_path = frames_in[i]
frame1 = PIL.Image.open(frame1_path)
frame2 = PIL.Image.open(frame2_path)
frame1_stem = f"{(int(frame1_path.split('/')[-1].split('_')[-1][:-4])+1):04}.jpg"
flo_path = f"/{flo_folder}/{frame1_stem}.npy"
weights_path = None
if video_init_check_consistency:
# TBD
pass
warp(frame1, frame2, flo_path, blend=blend, weights_path=weights_path).save(batchFolder+f"/flow/{folder}({run})_{i:04}.png")
if video_init_blend_mode == 'linear':
image_path = f"{outDirPath}/{folder}/blend/{folder}({run})_%04d.png"
filepath = f"{outDirPath}/{folder}/{folder}({run})_blend.mp4"
if last_frame == 'final_frame':
last_frame = len(glob(batchFolder+f"/blend/{folder}({run})_*.png"))
blend_out = batchFolder+f"/blend"
createPath(blend_out)
frames_in = glob(batchFolder+f"/{folder}({run})_*.png")
shutil.copy(frames_in[0], blend_out)
for i in trange(1, len(frames_in)):
frame1_path = frames_in[i-1]
frame2_path = frames_in[i]
frame1 = PIL.Image.open(frame1_path)
frame2 = PIL.Image.open(frame2_path)
frame = PIL.Image.fromarray((np.array(frame1)*(1-blend) + np.array(frame2)*(blend)).astype('uint8')).save(batchFolder+f"/blend/{folder}({run})_{i:04}.png")
cmd = [
'ffmpeg',
'-y',
'-vcodec',
'png',
'-r',
str(fps),
'-start_number',
str(init_frame),
'-i',
image_path,
'-frames:v',
str(last_frame+1),
'-c:v',
'libx264',
'-vf',
f'fps={fps}',
'-pix_fmt',
'yuv420p',
'-crf',
'17',
'-preset',
'veryslow',
filepath
]
process = subprocess.Popen(cmd, cwd=f'{batchFolder}', stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if process.returncode != 0:
print(stderr)
raise RuntimeError(stderr)
else:
print("The video is ready and saved to the images folder")
# if view_video_in_cell:
# mp4 = open(filepath,'rb').read()
# data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
# display.HTML(f'<video width=400 controls><source src="{data_url}" type="video/mp4"></video>')
'''
# %%
# !! {"main_metadata":{
# !! "anaconda-cloud": {},
# !! "accelerator": "GPU",
# !! "colab": {
# !! "collapsed_sections": [
# !! "CreditsChTop",
# !! "TutorialTop",
# !! "CheckGPU",
# !! "InstallDeps",
# !! "DefMidasFns",
# !! "DefFns",
# !! "DefSecModel",
# !! "DefSuperRes",
# !! "AnimSetTop",
# !! "ExtraSetTop",
# !! "InstallRAFT",
# !! "CustModel",
# !! "FlowFns1",
# !! "FlowFns2"
# !! ],
# !! "machine_shape": "hm",
# !! "name": "Disco Diffusion v5.4 [Now with Warp]",
# !! "private_outputs": true,
# !! "provenance": [],
# !! "include_colab_link": true
# !! },
# !! "kernelspec": {
# !! "display_name": "Python 3",
# !! "language": "python",
# !! "name": "python3"
# !! },
# !! "language_info": {
# !! "codemirror_mode": {
# !! "name": "ipython",
# !! "version": 3
# !! },
# !! "file_extension": ".py",
# !! "mimetype": "text/x-python",
# !! "name": "python",
# !! "nbconvert_exporter": "python",
# !! "pygments_lexer": "ipython3",
# !! "version": "3.6.1"
# !! }
# !! }}
@htoyryla
Copy link
Author

htoyryla commented Aug 9, 2022

Just noticed that changing "steps" from the default (250) has side effects. Steps=500 appears to zoom into the image (see below) so that we get only the center of what we would get at 250, just with higher details. This means that we lose the proper control from init image and masks.

bassx_2_0000-100

Going to 1000 even the more so.

@htoyryla
Copy link
Author

htoyryla commented Aug 9, 2022

OK... I had forgotten that skip_steps needs to be adjusted accordingly when steps is changed. Now at least dropping steps to 100 works when I simultaneously drop skip_steps to 30
bassx(3)_0

Likewise, steps=500 and skip_steps=200:
bassx(4)_0

Steps = 1000, skip_steps=300
bassx_6_0000-100

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment