Last active
November 11, 2015 11:07
-
-
Save huberflores/a555b245e148c4cbad58 to your computer and use it in GitHub Desktop.
A fuzzy logic engine for computational offloading - simulation version
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# author Huber Flores | |
# | |
# The input of the engine is a dataset. For each tuple of the dataset a decision is expected | |
# Each attribute in the tuple is normalized in a 0-1 interval | |
library(iterators) | |
library(foreach) | |
source("fuzzy-model.R") | |
myTraces <- read.csv("traces.csv") | |
accuracy <- c() | |
#0 wrong | |
#1 right | |
myAccuracy <- function(d){ | |
decision(d$Energy.consumed.mAh., d$Bandwidth.RTT.ms., d$Processing.time.ms., d$Pre.cache.server, d$Decision) | |
} | |
accuracy <- foreach(i = iter(myTraces, by = "row")) %do% myAccuracy(i) | |
df <- as.data.frame(do.call(rbind, accuracy), col.names=FALSE) | |
write.table(df, "decision.csv") | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# author Huber Flores | |
# | |
library(sets) | |
U1 <- seq(from = 0, to = 1, by = 0.0001) | |
#DIMENSIONS | |
variables <- | |
set( | |
code = | |
fuzzy_partition(varnames= | |
c(ELow = 0.2 , ENormal = 0.5, EHigh = 0.8), | |
FUN= fuzzy_cone, radius = 0.2, universe=U1), | |
bandwidth = | |
fuzzy_partition(varnames= | |
c(SLow = 0.2, SNormal=0.5, SHigh=0.8), | |
FUN = fuzzy_cone, radius = 0.2, universe=U1), | |
acceleration = | |
fuzzy_partition(varnames= | |
c(ALow = 0.2, ANormal=0.5, AHigh=0.8), | |
FUN = fuzzy_cone, radius = 0.2, universe=U1), | |
processing = | |
fuzzy_partition(varnames= | |
c(Local = 0.3, Remote = 0.7), | |
FUN = fuzzy_cone, radius = 0.3, universe=U1) | |
) | |
rules <- | |
set( | |
#set complete | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SHigh && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SHigh && acceleration %is% ANormal, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SHigh && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SNormal && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SNormal && acceleration %is% ANormal, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SNormal && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SLow && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SLow && acceleration %is% ANormal, processing %is% Local), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SLow && acceleration %is% ALow, processing %is% Local), | |
#set complete | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SHigh && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SHigh && acceleration %is% ANormal, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SHigh && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SNormal && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SNormal && acceleration %is% ANormal, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SNormal && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SLow && acceleration %is% AHigh, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SLow && acceleration %is% ANormal, processing %is% Local), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SLow && acceleration %is% ALow, processing %is% Local), | |
#set complete | |
fuzzy_rule(code %is% ELow && bandwidth %is% SHigh && acceleration %is% AHigh, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SHigh && acceleration %is% ANormal, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SHigh && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SNormal && acceleration %is% AHigh, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SNormal && acceleration %is% ANormal, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SNormal && acceleration %is% ALow, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SLow && acceleration %is% AHigh, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SLow && acceleration %is% ANormal, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SLow && acceleration %is% ALow, processing %is% Local), | |
#set complete | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SHigh, processing %is% Remote), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SLow, processing %is% Local), | |
fuzzy_rule(code %is% EHigh && bandwidth %is% SNormal, processing %is% Local), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SLow, processing %is% Local), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SHigh, processing %is% Remote), | |
fuzzy_rule(code %is% ENormal && bandwidth %is% SNormal, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SLow, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SNormal, processing %is% Local), | |
fuzzy_rule(code %is% ELow && bandwidth %is% SHigh, processing %is% Local) | |
) | |
context <- fuzzy_system(variables, rules) | |
decision <- function(var1, var2, var3, var4, expected){ | |
if (var4>=1){ | |
return(1) | |
} | |
fi <- fuzzy_inference(context, list(code=var1, bandwidth=var2, acceleration=var3)) | |
degree <- gset_defuzzify(fi, "centroid") | |
if (is.nan(degree)){ | |
return(0) | |
} | |
if (degree>0.5){ | |
result <- 1 | |
}else{ | |
result <- 0 | |
} | |
if (all(result==expected)){ | |
return(1) | |
}else{ | |
return(0) | |
} | |
} | |
U1 <- NULL |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment