Skip to content

Instantly share code, notes, and snippets.

@huks0
Last active October 1, 2024 09:21
Show Gist options
  • Save huks0/e48d604fc9dd91731bc687d6e3933db4 to your computer and use it in GitHub Desktop.
Save huks0/e48d604fc9dd91731bc687d6e3933db4 to your computer and use it in GitHub Desktop.
A table detection, cell recognition and text extraction algorithm to convert tables in images to excel files, using pytesseract and open cv.
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import csv
try:
from PIL import Image
except ImportError:
import Image
import pytesseract
#read your file
file=r'/Users/marius/Desktop/Masterarbeit/Medium/Medium.png'
img = cv2.imread(file,0)
img.shape
#thresholding the image to a binary image
thresh,img_bin = cv2.threshold(img,128,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
#inverting the image
img_bin = 255-img_bin
cv2.imwrite('/Users/marius/Desktop/cv_inverted.png',img_bin)
#Plotting the image to see the output
plotting = plt.imshow(img_bin,cmap='gray')
plt.show()
# countcol(width) of kernel as 100th of total width
kernel_len = np.array(img).shape[1]//100
# Defining a vertical kernel to detect all vertical lines of image
ver_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, kernel_len))
# Defining a horizontal kernel to detect all horizontal lines of image
hor_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_len, 1))
# A kernel of 2x2
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
#Use vertical kernel to detect and save the vertical lines in a jpg
image_1 = cv2.erode(img_bin, ver_kernel, iterations=3)
vertical_lines = cv2.dilate(image_1, ver_kernel, iterations=3)
cv2.imwrite("/Users/marius/Desktop/vertical.jpg",vertical_lines)
#Plot the generated image
plotting = plt.imshow(image_1,cmap='gray')
plt.show()
#Use horizontal kernel to detect and save the horizontal lines in a jpg
image_2 = cv2.erode(img_bin, hor_kernel, iterations=3)
horizontal_lines = cv2.dilate(image_2, hor_kernel, iterations=3)
cv2.imwrite("/Users/marius/Desktop/horizontal.jpg",horizontal_lines)
#Plot the generated image
plotting = plt.imshow(image_2,cmap='gray')
plt.show()
# Combine horizontal and vertical lines in a new third image, with both having same weight.
img_vh = cv2.addWeighted(vertical_lines, 0.5, horizontal_lines, 0.5, 0.0)
#Eroding and thesholding the image
img_vh = cv2.erode(~img_vh, kernel, iterations=2)
thresh, img_vh = cv2.threshold(img_vh,128,255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
cv2.imwrite("/Users/marius/Desktop/img_vh.jpg", img_vh)
bitxor = cv2.bitwise_xor(img,img_vh)
bitnot = cv2.bitwise_not(bitxor)
#Plotting the generated image
plotting = plt.imshow(bitnot,cmap='gray')
plt.show()
# Detect contours for following box detection
contours, hierarchy = cv2.findContours(img_vh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def sort_contours(cnts, method="left-to-right"):
# initialize the reverse flag and sort index
reverse = False
i = 0
# handle if we need to sort in reverse
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
# handle if we are sorting against the y-coordinate rather than
# the x-coordinate of the bounding box
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
# construct the list of bounding boxes and sort them from top to
# bottom
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b:b[1][i], reverse=reverse))
# return the list of sorted contours and bounding boxes
return (cnts, boundingBoxes)
# Sort all the contours by top to bottom.
contours, boundingBoxes = sort_contours(contours, method="top-to-bottom")
#Creating a list of heights for all detected boxes
heights = [boundingBoxes[i][3] for i in range(len(boundingBoxes))]
#Get mean of heights
mean = np.mean(heights)
#Create list box to store all boxes in
box = []
# Get position (x,y), width and height for every contour and show the contour on image
for c in contours:
x, y, w, h = cv2.boundingRect(c)
if (w<1000 and h<500):
image = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
box.append([x,y,w,h])
plotting = plt.imshow(image,cmap='gray')
plt.show()
#Creating two lists to define row and column in which cell is located
row=[]
column=[]
j=0
#Sorting the boxes to their respective row and column
for i in range(len(box)):
if(i==0):
column.append(box[i])
previous=box[i]
else:
if(box[i][1]<=previous[1]+mean/2):
column.append(box[i])
previous=box[i]
if(i==len(box)-1):
row.append(column)
else:
row.append(column)
column=[]
previous = box[i]
column.append(box[i])
print(column)
print(row)
#calculating maximum number of cells
countcol = 0
for i in range(len(row)):
countcol = len(row[i])
if countcol > countcol:
countcol = countcol
#Retrieving the center of each column
center = [int(row[i][j][0]+row[i][j][2]/2) for j in range(len(row[i])) if row[0]]
center=np.array(center)
center.sort()
print(center)
#Regarding the distance to the columns center, the boxes are arranged in respective order
finalboxes = []
for i in range(len(row)):
lis=[]
for k in range(countcol):
lis.append([])
for j in range(len(row[i])):
diff = abs(center-(row[i][j][0]+row[i][j][2]/4))
minimum = min(diff)
indexing = list(diff).index(minimum)
lis[indexing].append(row[i][j])
finalboxes.append(lis)
#from every single image-based cell/box the strings are extracted via pytesseract and stored in a list
outer=[]
for i in range(len(finalboxes)):
for j in range(len(finalboxes[i])):
inner=''
if(len(finalboxes[i][j])==0):
outer.append(' ')
else:
for k in range(len(finalboxes[i][j])):
y,x,w,h = finalboxes[i][j][k][0],finalboxes[i][j][k][1], finalboxes[i][j][k][2],finalboxes[i][j][k][3]
finalimg = bitnot[x:x+h, y:y+w]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 1))
border = cv2.copyMakeBorder(finalimg,2,2,2,2, cv2.BORDER_CONSTANT,value=[255,255])
resizing = cv2.resize(border, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
dilation = cv2.dilate(resizing, kernel,iterations=1)
erosion = cv2.erode(dilation, kernel,iterations=2)
out = pytesseract.image_to_string(erosion)
if(len(out)==0):
out = pytesseract.image_to_string(erosion, config='--psm 3')
inner = inner +" "+ out
outer.append(inner)
#Creating a dataframe of the generated OCR list
arr = np.array(outer)
dataframe = pd.DataFrame(arr.reshape(len(row), countcol))
print(dataframe)
data = dataframe.style.set_properties(align="left")
#Converting it in a excel-file
data.to_excel("/Users/marius/Desktop/output.xlsx")
@himadrijena143
Copy link

Hi

This code is not able to read the numbers in the first cell and also few from second cell in this attached .png file. As per my debugging the code is failing at the below step, while extracting the values.

Step written as comment: "#from every single image-based cell/box the strings are extracted via pytesseract and stored in a list"

Could you please help me decoding the issue. Attaching the file for your reference.
Testfile3

Kindly let me know if you need any further input.

@himadrijena143
Copy link

Hi

Could you please help me with this issue. I am waiting for the same.

@xiaoluonihao
Copy link

xiaoluonihao commented Apr 30, 2020

Dear sir, i need some helps. If the image is not screenshot picture, but a photo taken using cell phone, what should i do to extract the excel from the photo of tabular. Just as the following, thanks for your kind share.
IMG_3608

@huks0
Copy link
Author

huks0 commented Apr 30, 2020 via email

@nlosacco
Copy link

nlosacco commented Sep 3, 2020

Dear Marius,
congratulations for the great job!
I am trying to run your script on MacOS with no success.
Even with the test image on the website:
https://towardsdatascience.com/a-table-detection-cell-recognition-and-text-extraction-algorithm-to-convert-tables-to-excel-files-902edcf289ec
When I run
python cellrecognition.py

The images are plotted as expected, but in the end I get the following output:

[[1676, 552, 264, 40], [1407, 552, 265, 40], [1140, 552, 263, 40], [871, 552, 265, 40], [335, 552, 532, 40], [66, 552, 265, 40]]
[[[1676, 104, 264, 40], [1407, 104, 265, 40], [1140, 104, 263, 40], [871, 104, 265, 40], [602, 104, 265, 40], [335, 104, 263, 40], [66, 104, 265, 40]], [[1676, 148, 264, 38], [1407, 148, 265, 38], [1140, 148, 263, 38], [871, 148, 265, 38], [602, 148, 265, 38], [335, 148, 263, 38], [66, 148, 265, 38]], [[1676, 199, 264, 42], [1407, 199, 265, 42], [1140, 199, 263, 42], [871, 199, 265, 42], [335, 199, 532, 42], [66, 199, 265, 42]], [[1676, 245, 264, 40], [1407, 245, 265, 40], [1140, 245, 263, 40], [871, 245, 265, 40], [335, 245, 532, 40], [66, 245, 265, 40]], [[1676, 289, 264, 40], [1407, 289, 265, 40], [1140, 289, 264, 40], [871, 289, 265, 40], [335, 289, 532, 40], [66, 289, 265, 40]], [[1676, 333, 264, 38], [1407, 333, 265, 38], [1140, 333, 264, 38], [871, 333, 265, 38], [335, 333, 532, 38], [66, 333, 265, 38]], [[1676, 375, 264, 40], [1407, 375, 265, 40], [1140, 375, 264, 40], [871, 375, 265, 40], [335, 375, 532, 40], [66, 375, 265, 40]], [[1676, 419, 264, 42], [1407, 419, 265, 42], [1140, 419, 264, 42], [871, 419, 265, 42], [335, 419, 532, 42], [66, 419, 265, 42]], [[1676, 464, 264, 40], [1407, 464, 265, 40], [1140, 464, 263, 40], [871, 464, 265, 40], [335, 464, 532, 40], [66, 464, 265, 40]], [[1676, 508, 264, 40], [1407, 508, 265, 40], [1140, 508, 263, 40], [871, 508, 265, 40], [335, 508, 532, 40], [66, 508, 265, 40]], [[1676, 552, 264, 40], [1407, 552, 265, 40], [1140, 552, 263, 40], [871, 552, 265, 40], [335, 552, 532, 40], [66, 552, 265, 40]]]
[ 198  601 1003 1271 1539 1808]

                                         0                              1          2           3                 4               5
0    Consultant:\n
                     Project:\n
                                Kaliro Siduco\n
                                                   XGTR\n

                                                                          Customer:\n
                                                                                        Tech Alive\n

1          Date:\n
                          Team:\n
                                  21 May 2020\n


                                                                       Customer-ID:\n
                                                                                         443228-XY\n

2       Position\n
                                       Service\n

                                                             Factor\n
                                                                              Amount\n
                                                                                               Unit\n

3
                               Backend Support\n


                                                                                  10\n
                                                                                              hours\n

4
                                 Team Meetings\n



                                                                                              hours\n

5
                        Milestone Presentation\n



                                                                                              hours\n

6
                              Code Refactoring\n



                                                                                              hours\n

7
                                     Migration\n



                                                                                              hours\n

8
                                    Next Steps\n



                                                                                              hours\n

9






10

                                                   Total\n

                                                                                  30\n
                                                                                              hours\n

Traceback (most recent call last):
  File "cellrecognition.py", line 194, in <module>
    data.to_excel("/Users/nunzio/tmp/output.xlsx")
  File "/opt/miniconda3/lib/python3.7/site-packages/pandas/io/formats/style.py", line 235, in to_excel
    engine=engine,
  File "/opt/miniconda3/lib/python3.7/site-packages/pandas/io/formats/excel.py", line 739, in write
    freeze_panes=freeze_panes,
  File "/opt/miniconda3/lib/python3.7/site-packages/pandas/io/excel/_openpyxl.py", line 425, in write_cells
    xcell.value, fmt = self._value_with_fmt(cell.val)
  File "/opt/miniconda3/lib/python3.7/site-packages/openpyxl/cell/cell.py", line 216, in value
    self._bind_value(value)
  File "/opt/miniconda3/lib/python3.7/site-packages/openpyxl/cell/cell.py", line 192, in _bind_value
    value = self.check_string(value)
  File "/opt/miniconda3/lib/python3.7/site-packages/openpyxl/cell/cell.py", line 159, in check_string
    raise IllegalCharacterError
openpyxl.utils.exceptions.IllegalCharacterError

Do you have any suggestions for trying and solve this issue?
Best,

N

@huks0
Copy link
Author

huks0 commented Sep 3, 2020 via email

@nlosacco
Copy link

nlosacco commented Sep 4, 2020

Its successful. You sent me the fully printed table. The error occurs in turning the result into an excel table. Your conda installation causes this error. Update Anaconda or try to find the solution by using the error message in google best, marius Von meinem iPhone gesendet

Yep, you're right. I had to specify the data.to_excel engine after installing the proper module. Also needed to specify numbers to be exported as numbers instead of strings:

writer = pd.ExcelWriter('/Users/nunzio/tmp/ciao.xlsx',
                        engine='xlsxwriter',
                        options={'strings_to_numbers': True})
data.to_excel(writer)

writer.save()

Now my problem is with tesseract correctly recognising the table fields. The table originally comes from a scanned pdf file, I have found that reducing the resolution in the converted PNG gives more reasonable results. I also noted that a certain number of newlines (and maybe carriage returns) are added at the end of each field. For some tables it works with:

out = pytesseract.image_to_string(erosion)[:-2]

and then:

                out = out.replace('\n','')
                out = out.replace('\r','')
                out = out.replace('\t','')
                out = out.replace(' ','')

Just to make sure.
Please find attached a sample table if you have time to have a look.

Thanks again,

N
prova

@saiprasadjnv
Copy link

@huks0: The variable i is a little ambiguous at line 145. It is causing an error.
Screen Shot 2020-10-01 at 4 13 56 PM

@mirfan899
Copy link

I ran it on your medium blog image it shows errors.
check here
Amount values are missing. Also, it read the text outside the table.
extracttable

@ankitultimate325
Copy link

How can we get the co-ordinates of the cells

@amitsaini8445
Copy link

Hi,
In 175 lines you have not declared the bitnot because when I run this code it give me an error Undefined bitnot . How solve it or which bitnot images .please tell me.

@davidpraise45
Copy link

On line 182 and 184, wouldn't it be better to only OCR just once (just on line 182), by specifying a general configuration, like

pytesseract.image_to_string(erosion, config='-l eng --psm 3')

Then check if the length of the text equals zero and decide whether to append it into the existing variable string?

Cause the already existing solution you've created, perform OCR twice which increases the run time.

@estatistics
Copy link

Not recognized correctly. cannot extract it pic

@findgord
Copy link

findgord commented Feb 7, 2024

Hi your code worked perfectly thanks. just added a loop to to run through an image folder and append tables to excel file.

@snehaaraj27
Copy link

Screenshot 2024-06-12 224509
its not detecting properl

@2noScript
Copy link

1-1
0-2
5-3
5-2

I have problems with multiple table formats.

Please help me solve the problem or sample

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment