Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save hustzxd/25e797b1d07263b8d0293d8ea4be63ac to your computer and use it in GitHub Desktop.
Save hustzxd/25e797b1d07263b8d0293d8ea4be63ac to your computer and use it in GitHub Desktop.
name: "gnet_region_voc"
layer {
name: "data"
type: "BoxData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: false
force_color: true
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "../../../data/yolo/shuffle_lmdb/trainval_lmdb"
batch_size: 8
side: 13
backend: LMDB
}
}
layer {
name: "data"
type: "BoxData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
force_color: true
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "../../../data/yolo/shuffle_lmdb/test2007_lmdb"
batch_size: 4
side: 13
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv2"
top: "conv2"
name: "scale_conv2"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv3"
top: "conv3"
name: "scale_conv3"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn4"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv4"
top: "conv4"
name: "scale_conv4"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn5"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv5"
top: "conv5"
name: "scale_conv5"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv6"
type: "Convolution"
bottom: "pool5"
top: "conv6"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn6"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv6"
top: "conv6"
name: "scale_conv6"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "conv6"
top: "conv6"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv6"
top: "conv7"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn7"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv7"
top: "conv7"
name: "scale_conv7"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "conv7"
top: "conv7"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv7"
top: "conv8"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn8"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv8"
top: "conv8"
name: "scale_conv8"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu8"
type: "ReLU"
bottom: "conv8"
top: "conv8"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool8"
type: "Pooling"
bottom: "conv8"
top: "pool8"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv9"
type: "Convolution"
bottom: "pool8"
top: "conv9"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn9"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv9"
top: "conv9"
name: "scale_conv9"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu9"
type: "ReLU"
bottom: "conv9"
top: "conv9"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv9"
top: "conv10"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn10"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv10"
top: "conv10"
name: "scale_conv10"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu10"
type: "ReLU"
bottom: "conv10"
top: "conv10"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv10"
top: "conv11"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn11"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv11"
top: "conv11"
name: "scale_conv11"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu11"
type: "ReLU"
bottom: "conv11"
top: "conv11"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv11"
top: "conv12"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn12"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv12"
top: "conv12"
name: "scale_conv12"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu12"
type: "ReLU"
bottom: "conv12"
top: "conv12"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv12"
top: "conv13"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn13"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv13"
top: "conv13"
name: "scale_conv13"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu13"
type: "ReLU"
bottom: "conv13"
top: "conv13"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool13"
type: "Pooling"
bottom: "conv13"
top: "pool13"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv14"
type: "Convolution"
bottom: "pool13"
top: "conv14"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn14"
type: "BatchNorm"
bottom: "conv14"
top: "conv14"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv14"
top: "conv14"
name: "scale_conv14"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu14"
type: "ReLU"
bottom: "conv14"
top: "conv14"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv15"
type: "Convolution"
bottom: "conv14"
top: "conv15"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn15"
type: "BatchNorm"
bottom: "conv15"
top: "conv15"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv15"
top: "conv15"
name: "scale_conv15"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu15"
type: "ReLU"
bottom: "conv15"
top: "conv15"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv15"
top: "conv16"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn16"
type: "BatchNorm"
bottom: "conv16"
top: "conv16"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv16"
top: "conv16"
name: "scale_conv16"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu16"
type: "ReLU"
bottom: "conv16"
top: "conv16"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv16"
top: "conv17"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
kernel_size: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn17"
type: "BatchNorm"
bottom: "conv17"
top: "conv17"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv17"
top: "conv17"
name: "scale_conv17"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu17"
type: "ReLU"
bottom: "conv17"
top: "conv17"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv17"
top: "conv18"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn18"
type: "BatchNorm"
bottom: "conv18"
top: "conv18"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv18"
top: "conv18"
name: "scale_conv18"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu18"
type: "ReLU"
bottom: "conv18"
top: "conv18"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv19"
type: "Convolution"
bottom: "conv18"
top: "conv19"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn19"
type: "BatchNorm"
bottom: "conv19"
top: "conv19"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv19"
top: "conv19"
name: "scale_conv19"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu19"
type: "ReLU"
bottom: "conv19"
top: "conv19"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv20"
type: "Convolution"
bottom: "conv19"
top: "conv20"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn20"
type: "BatchNorm"
bottom: "conv20"
top: "conv20"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv20"
top: "conv20"
name: "scale_conv20"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu20"
type: "ReLU"
bottom: "conv20"
top: "conv20"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv21"
type: "Convolution"
bottom: "conv20"
top: "conv21"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
pad: 1
kernel_size: 3
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn21"
type: "BatchNorm"
bottom: "conv21"
top: "conv21"
batch_norm_param {
use_global_stats: false
}
}
layer {
bottom: "conv21"
top: "conv21"
name: "scale_conv21"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "relu21"
type: "ReLU"
bottom: "conv21"
top: "conv21"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv_reg"
type: "Convolution"
bottom: "conv21"
top: "conv_reg"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 125
kernel_size: 1
stride: 1
#bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "det_loss"
type: "RegionLoss"
bottom: "conv_reg"
bottom: "label"
top: "det_loss"
loss_weight: 1
region_loss_param {
side: 13
num_class: 20
coords: 4
num: 5
softmax: 1
jitter: 0.2
rescore: 1
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
absolute: 1
thresh: 0.5
random: 0
biases: 1.08
biases: 1.19
biases: 3.42
biases: 4.41
biases: 6.63
biases: 11.38
biases: 9.42
biases: 5.11
biases: 16.62
biases: 10.52
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment