Last active
July 11, 2017 03:17
-
-
Save hustzxd/48a318c81493eeb12d1b57cc0938ddea to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "YOLONET" | |
layer { | |
name: "data" | |
type: "Input" | |
top: "data" | |
input_param { shape: { dim: 1 dim: 3 dim: 416 dim: 416 } } | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
convolution_param { | |
num_output: 32 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn1" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "scale1" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn2" | |
type: "BatchNorm" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "scale2" | |
type: "Scale" | |
bottom: "conv2" | |
top: "conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn3" | |
type: "BatchNorm" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "scale3" | |
type: "Scale" | |
bottom: "conv3" | |
top: "conv3" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
pad: 0 #?? | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn4" | |
type: "BatchNorm" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "scale4" | |
type: "Scale" | |
bottom: "conv4" | |
top: "conv4" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn5" | |
type: "BatchNorm" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "scale5" | |
type: "Scale" | |
bottom: "conv5" | |
top: "conv5" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "conv6" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn6" | |
type: "BatchNorm" | |
bottom: "conv6" | |
top: "conv6" | |
} | |
layer { | |
name: "scale6" | |
type: "Scale" | |
bottom: "conv6" | |
top: "conv6" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "conv6" | |
top: "conv6" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv7" | |
type: "Convolution" | |
bottom: "conv6" | |
top: "conv7" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn7" | |
type: "BatchNorm" | |
bottom: "conv7" | |
top: "conv7" | |
} | |
layer { | |
name: "scale7" | |
type: "Scale" | |
bottom: "conv7" | |
top: "conv7" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "conv7" | |
top: "conv7" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv8" | |
type: "Convolution" | |
bottom: "conv7" | |
top: "conv8" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn8" | |
type: "BatchNorm" | |
bottom: "conv8" | |
top: "conv8" | |
} | |
layer { | |
name: "scale8" | |
type: "Scale" | |
bottom: "conv8" | |
top: "conv8" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu8" | |
type: "ReLU" | |
bottom: "conv8" | |
top: "conv8" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool8" | |
type: "Pooling" | |
bottom: "conv8" | |
top: "pool8" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv9" | |
type: "Convolution" | |
bottom: "pool8" | |
top: "conv9" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn9" | |
type: "BatchNorm" | |
bottom: "conv9" | |
top: "conv9" | |
} | |
layer { | |
name: "scale9" | |
type: "Scale" | |
bottom: "conv9" | |
top: "conv9" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu9" | |
type: "ReLU" | |
bottom: "conv9" | |
top: "conv9" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv10" | |
type: "Convolution" | |
bottom: "conv9" | |
top: "conv10" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn10" | |
type: "BatchNorm" | |
bottom: "conv10" | |
top: "conv10" | |
} | |
layer { | |
name: "scale10" | |
type: "Scale" | |
bottom: "conv10" | |
top: "conv10" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu10" | |
type: "ReLU" | |
bottom: "conv10" | |
top: "conv10" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv11" | |
type: "Convolution" | |
bottom: "conv10" | |
top: "conv11" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn11" | |
type: "BatchNorm" | |
bottom: "conv11" | |
top: "conv11" | |
} | |
layer { | |
name: "scale11" | |
type: "Scale" | |
bottom: "conv11" | |
top: "conv11" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu11" | |
type: "ReLU" | |
bottom: "conv11" | |
top: "conv11" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv12" | |
type: "Convolution" | |
bottom: "conv11" | |
top: "conv12" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn12" | |
type: "BatchNorm" | |
bottom: "conv12" | |
top: "conv12" | |
} | |
layer { | |
name: "scale12" | |
type: "Scale" | |
bottom: "conv12" | |
top: "conv12" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu12" | |
type: "ReLU" | |
bottom: "conv12" | |
top: "conv12" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv13" | |
type: "Convolution" | |
bottom: "conv12" | |
top: "conv13" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn13" | |
type: "BatchNorm" | |
bottom: "conv13" | |
top: "conv13" | |
} | |
layer { | |
name: "scale13" | |
type: "Scale" | |
bottom: "conv13" | |
top: "conv13" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu13" | |
type: "ReLU" | |
bottom: "conv13" | |
top: "conv13" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool13" | |
type: "Pooling" | |
bottom: "conv13" | |
top: "pool13" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv14" | |
type: "Convolution" | |
bottom: "pool13" | |
top: "conv14" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn14" | |
type: "BatchNorm" | |
bottom: "conv14" | |
top: "conv14" | |
} | |
layer { | |
name: "scale14" | |
type: "Scale" | |
bottom: "conv14" | |
top: "conv14" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu14" | |
type: "ReLU" | |
bottom: "conv14" | |
top: "conv14" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv15" | |
type: "Convolution" | |
bottom: "conv14" | |
top: "conv15" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn15" | |
type: "BatchNorm" | |
bottom: "conv15" | |
top: "conv15" | |
} | |
layer { | |
name: "scale15" | |
type: "Scale" | |
bottom: "conv15" | |
top: "conv15" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu15" | |
type: "ReLU" | |
bottom: "conv15" | |
top: "conv15" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv16" | |
type: "Convolution" | |
bottom: "conv15" | |
top: "conv16" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn16" | |
type: "BatchNorm" | |
bottom: "conv16" | |
top: "conv16" | |
} | |
layer { | |
name: "scale16" | |
type: "Scale" | |
bottom: "conv16" | |
top: "conv16" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu16" | |
type: "ReLU" | |
bottom: "conv16" | |
top: "conv16" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv17" | |
type: "Convolution" | |
bottom: "conv16" | |
top: "conv17" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn17" | |
type: "BatchNorm" | |
bottom: "conv17" | |
top: "conv17" | |
} | |
layer { | |
name: "scale17" | |
type: "Scale" | |
bottom: "conv17" | |
top: "conv17" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu17" | |
type: "ReLU" | |
bottom: "conv17" | |
top: "conv17" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv18" | |
type: "Convolution" | |
bottom: "conv17" | |
top: "conv18" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn18" | |
type: "BatchNorm" | |
bottom: "conv18" | |
top: "conv18" | |
} | |
layer { | |
name: "scale18" | |
type: "Scale" | |
bottom: "conv18" | |
top: "conv18" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu18" | |
type: "ReLU" | |
bottom: "conv18" | |
top: "conv18" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv19" | |
type: "Convolution" | |
bottom: "conv18" | |
top: "conv19" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn19" | |
type: "BatchNorm" | |
bottom: "conv19" | |
top: "conv19" | |
} | |
layer { | |
name: "scale19" | |
type: "Scale" | |
bottom: "conv19" | |
top: "conv19" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu19" | |
type: "ReLU" | |
bottom: "conv19" | |
top: "conv19" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv20" | |
type: "Convolution" | |
bottom: "conv19" | |
top: "conv20" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn20" | |
type: "BatchNorm" | |
bottom: "conv20" | |
top: "conv20" | |
} | |
layer { | |
name: "scale20" | |
type: "Scale" | |
bottom: "conv20" | |
top: "conv20" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu20" | |
type: "ReLU" | |
bottom: "conv20" | |
top: "conv20" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "reorg1" | |
type: "Reorg" | |
bottom: "conv13" | |
top: "reorg1" | |
reorg_param { | |
stride: 2 | |
} | |
} | |
layer { | |
name: "concat2" | |
type: "Concat" | |
bottom: "reorg1" | |
bottom: "conv20" | |
top: "concat2" | |
} | |
layer{ | |
name: "conv21" | |
type: "Convolution" | |
bottom: "concat2" | |
top: "conv21" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn21" | |
type: "BatchNorm" | |
bottom: "conv21" | |
top: "conv21" | |
} | |
layer { | |
name: "scale21" | |
type: "Scale" | |
bottom: "conv21" | |
top: "conv21" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu21" | |
type: "ReLU" | |
bottom: "conv21" | |
top: "conv21" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv22" | |
type: "Convolution" | |
bottom: "conv21" | |
top: "conv22" | |
convolution_param { | |
num_output: 125 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
} | |
} | |
# layer { | |
# name: "relu22" | |
# type: "ReLU" | |
# bottom: "conv22" | |
# top: "conv22" | |
# } | |
layer{ | |
name: "permute" | |
type: "Permute" | |
bottom: "conv22" | |
top: "permute_conv_22" | |
permute_param {order: 0 order: 2 order: 3 order: 1} | |
} | |
# layer { | |
# name: "region1" | |
# type: "Region" | |
# bottom: "permute_conv_22" | |
# top: "region1" | |
# region_param { | |
# classes: 20 | |
# # coords: 4 | |
# boxes_of_each_grid: 5 | |
# softmax: true | |
# } | |
# } | |
layer { | |
name: "region_output" | |
type: "RegionOutput" | |
bottom: "permute_conv_22" | |
top: "region_output" | |
region_output_param { | |
softmax: true | |
classes: 20 | |
# coords: 4 | |
boxes_of_each_grid: 5 | |
thres_nms: 0.4 | |
thres_prob: 0.25 | |
anchor_coords {pw: 1.08 ph: 1.19} | |
anchor_coords {pw: 3.42 ph: 4.41} | |
anchor_coords {pw: 6.63 ph: 11.38} | |
anchor_coords {pw: 9.42 ph: 5.11} | |
anchor_coords {pw: 16.62 ph: 10.52} | |
} | |
} | |
#http://ethereon.github.io/netscope/#/gist/9640ecb59a75f230446e7c70d2f8bcf3 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment