Skip to content

Instantly share code, notes, and snippets.

@hustzxd
Created October 2, 2017 07:22
Show Gist options
  • Save hustzxd/5c125ebebca097e6dac4803ee63fa639 to your computer and use it in GitHub Desktop.
Save hustzxd/5c125ebebca097e6dac4803ee63fa639 to your computer and use it in GitHub Desktop.
input: "data"
input_dim: 1
input_dim: 4
input_dim: 368
input_dim: 368
layer {
name: "image"
type: "Slice"
bottom: "data"
top: "image"
top: "center_map"
slice_param {
slice_point: 3
axis: 1
}
}
layer {
name: "pool_center_lower"
type: "Pooling"
bottom: "center_map"
top: "pool_center_lower"
pooling_param {
pool: AVE
kernel_size: 9
stride: 8
}
}
layer {
name: "conv1_stage1"
type: "Convolution"
bottom: "image"
top: "conv1_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_stage1"
type: "ReLU"
bottom: "conv1_stage1"
top: "conv1_stage1"
}
layer {
name: "pool1_stage1"
type: "Pooling"
bottom: "conv1_stage1"
top: "pool1_stage1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2_stage1"
type: "Convolution"
bottom: "pool1_stage1"
top: "conv2_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2_stage1"
type: "ReLU"
bottom: "conv2_stage1"
top: "conv2_stage1"
}
layer {
name: "pool2_stage1"
type: "Pooling"
bottom: "conv2_stage1"
top: "pool2_stage1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3_stage1"
type: "Convolution"
bottom: "pool2_stage1"
top: "conv3_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_stage1"
type: "ReLU"
bottom: "conv3_stage1"
top: "conv3_stage1"
}
layer {
name: "pool3_stage1"
type: "Pooling"
bottom: "conv3_stage1"
top: "pool3_stage1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv4_stage1"
type: "Convolution"
bottom: "pool3_stage1"
top: "conv4_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_stage1"
type: "ReLU"
bottom: "conv4_stage1"
top: "conv4_stage1"
}
layer {
name: "conv5_stage1"
type: "Convolution"
bottom: "conv4_stage1"
top: "conv5_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_stage1"
type: "ReLU"
bottom: "conv5_stage1"
top: "conv5_stage1"
}
layer {
name: "conv6_stage1"
type: "Convolution"
bottom: "conv5_stage1"
top: "conv6_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu6_stage1"
type: "ReLU"
bottom: "conv6_stage1"
top: "conv6_stage1"
}
layer {
name: "conv7_stage1"
type: "Convolution"
bottom: "conv6_stage1"
top: "conv7_stage1"
param {
lr_mult: 5
decay_mult: 1
}
param {
lr_mult: 10
decay_mult: 0
}
convolution_param {
num_output: 10
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_stage2"
type: "Convolution"
bottom: "image"
top: "conv1_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_stage2"
type: "ReLU"
bottom: "conv1_stage2"
top: "conv1_stage2"
}
layer {
name: "pool1_stage2"
type: "Pooling"
bottom: "conv1_stage2"
top: "pool1_stage2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2_stage2"
type: "Convolution"
bottom: "pool1_stage2"
top: "conv2_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2_stage2"
type: "ReLU"
bottom: "conv2_stage2"
top: "conv2_stage2"
}
layer {
name: "pool2_stage2"
type: "Pooling"
bottom: "conv2_stage2"
top: "pool2_stage2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3_stage2"
type: "Convolution"
bottom: "pool2_stage2"
top: "conv3_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 4
kernel_size: 9
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_stage2"
type: "ReLU"
bottom: "conv3_stage2"
top: "conv3_stage2"
}
layer {
name: "pool3_stage2"
type: "Pooling"
bottom: "conv3_stage2"
top: "pool3_stage2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv4_stage2"
type: "Convolution"
bottom: "pool3_stage2"
top: "conv4_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_stage2"
type: "ReLU"
bottom: "conv4_stage2"
top: "conv4_stage2"
}
layer {
name: "concat_stage2"
type: "Concat"
bottom: "conv4_stage2"
bottom: "conv7_stage1"
bottom: "pool_center_lower"
top: "concat_stage2"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage2"
type: "Convolution"
bottom: "concat_stage2"
top: "Mconv1_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage2"
type: "ReLU"
bottom: "Mconv1_stage2"
top: "Mconv1_stage2"
}
layer {
name: "Mconv2_stage2"
type: "Convolution"
bottom: "Mconv1_stage2"
top: "Mconv2_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage2"
type: "ReLU"
bottom: "Mconv2_stage2"
top: "Mconv2_stage2"
}
layer {
name: "Mconv3_stage2"
type: "Convolution"
bottom: "Mconv2_stage2"
top: "Mconv3_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage2"
type: "ReLU"
bottom: "Mconv3_stage2"
top: "Mconv3_stage2"
}
layer {
name: "Mconv4_stage2"
type: "Convolution"
bottom: "Mconv3_stage2"
top: "Mconv4_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage2"
type: "ReLU"
bottom: "Mconv4_stage2"
top: "Mconv4_stage2"
}
layer {
name: "Mconv5_stage2"
type: "Convolution"
bottom: "Mconv4_stage2"
top: "Mconv5_stage2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 10
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_stage3"
type: "Convolution"
bottom: "pool3_stage2"
top: "conv1_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_stage3"
type: "ReLU"
bottom: "conv1_stage3"
top: "conv1_stage3"
}
layer {
name: "concat_stage3"
type: "Concat"
bottom: "conv1_stage3"
bottom: "Mconv5_stage2"
bottom: "pool_center_lower"
top: "concat_stage3"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage3"
type: "Convolution"
bottom: "concat_stage3"
top: "Mconv1_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage3"
type: "ReLU"
bottom: "Mconv1_stage3"
top: "Mconv1_stage3"
}
layer {
name: "Mconv2_stage3"
type: "Convolution"
bottom: "Mconv1_stage3"
top: "Mconv2_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage3"
type: "ReLU"
bottom: "Mconv2_stage3"
top: "Mconv2_stage3"
}
layer {
name: "Mconv3_stage3"
type: "Convolution"
bottom: "Mconv2_stage3"
top: "Mconv3_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage3"
type: "ReLU"
bottom: "Mconv3_stage3"
top: "Mconv3_stage3"
}
layer {
name: "Mconv4_stage3"
type: "Convolution"
bottom: "Mconv3_stage3"
top: "Mconv4_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage3"
type: "ReLU"
bottom: "Mconv4_stage3"
top: "Mconv4_stage3"
}
layer {
name: "Mconv5_stage3"
type: "Convolution"
bottom: "Mconv4_stage3"
top: "Mconv5_stage3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 10
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_stage4"
type: "Convolution"
bottom: "pool3_stage2"
top: "conv1_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_stage4"
type: "ReLU"
bottom: "conv1_stage4"
top: "conv1_stage4"
}
layer {
name: "concat_stage4"
type: "Concat"
bottom: "conv1_stage4"
bottom: "Mconv5_stage3"
bottom: "pool_center_lower"
top: "concat_stage4"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage4"
type: "Convolution"
bottom: "concat_stage4"
top: "Mconv1_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage4"
type: "ReLU"
bottom: "Mconv1_stage4"
top: "Mconv1_stage4"
}
layer {
name: "Mconv2_stage4"
type: "Convolution"
bottom: "Mconv1_stage4"
top: "Mconv2_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage4"
type: "ReLU"
bottom: "Mconv2_stage4"
top: "Mconv2_stage4"
}
layer {
name: "Mconv3_stage4"
type: "Convolution"
bottom: "Mconv2_stage4"
top: "Mconv3_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 5
kernel_size: 11
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage4"
type: "ReLU"
bottom: "Mconv3_stage4"
top: "Mconv3_stage4"
}
layer {
name: "Mconv4_stage4"
type: "Convolution"
bottom: "Mconv3_stage4"
top: "Mconv4_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage4"
type: "ReLU"
bottom: "Mconv4_stage4"
top: "Mconv4_stage4"
}
layer {
name: "Mconv5_stage4"
type: "Convolution"
bottom: "Mconv4_stage4"
top: "Mconv5_stage4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 10
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment