Last active
May 5, 2017 09:55
-
-
Save hustzxd/ce325d95006bb0d8ea261bb2b6482712 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "YOLONET" | |
layer { | |
name: "data" | |
type: "BoxData" | |
top: "data_bgr" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
# source: "../../../data/yolo/lmdb/test2007_lmdb" | |
source: "../caffe_yolov2/data/yolo/lmdb/trainval_lmdb" | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "BoxData" | |
top: "data_bgr" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
# source: "../../../data/yolo/lmdb/test2007_lmdb" | |
source: "../caffe_yolov2/data/yolo/lmdb/test2007_lmdb" | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "RGB" | |
type: "RGB" | |
bottom: "data_bgr" | |
top: "data_rgb" | |
RGB_param { | |
brg_to_rgb: true | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data_rgb" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn1" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "scale1" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
#default 1, 0 | |
scale_param { | |
bias_term: true | |
filler { | |
value: 1 | |
} | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn2" | |
type: "BatchNorm" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "scale2" | |
type: "Scale" | |
bottom: "conv2" | |
top: "conv2" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn3" | |
type: "BatchNorm" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "scale3" | |
type: "Scale" | |
bottom: "conv3" | |
top: "conv3" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
pad: 0 #?? | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn4" | |
type: "BatchNorm" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "scale4" | |
type: "Scale" | |
bottom: "conv4" | |
top: "conv4" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn5" | |
type: "BatchNorm" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layer { | |
name: "scale5" | |
type: "Scale" | |
bottom: "conv5" | |
top: "conv5" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "conv6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn6" | |
type: "BatchNorm" | |
bottom: "conv6" | |
top: "conv6" | |
} | |
layer { | |
name: "scale6" | |
type: "Scale" | |
bottom: "conv6" | |
top: "conv6" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "conv6" | |
top: "conv6" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv7" | |
type: "Convolution" | |
bottom: "conv6" | |
top: "conv7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn7" | |
type: "BatchNorm" | |
bottom: "conv7" | |
top: "conv7" | |
} | |
layer { | |
name: "scale7" | |
type: "Scale" | |
bottom: "conv7" | |
top: "conv7" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "conv7" | |
top: "conv7" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv8" | |
type: "Convolution" | |
bottom: "conv7" | |
top: "conv8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn8" | |
type: "BatchNorm" | |
bottom: "conv8" | |
top: "conv8" | |
} | |
layer { | |
name: "scale8" | |
type: "Scale" | |
bottom: "conv8" | |
top: "conv8" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu8" | |
type: "ReLU" | |
bottom: "conv8" | |
top: "conv8" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool8" | |
type: "Pooling" | |
bottom: "conv8" | |
top: "pool8" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv9" | |
type: "Convolution" | |
bottom: "pool8" | |
top: "conv9" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn9" | |
type: "BatchNorm" | |
bottom: "conv9" | |
top: "conv9" | |
} | |
layer { | |
name: "scale9" | |
type: "Scale" | |
bottom: "conv9" | |
top: "conv9" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu9" | |
type: "ReLU" | |
bottom: "conv9" | |
top: "conv9" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv10" | |
type: "Convolution" | |
bottom: "conv9" | |
top: "conv10" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn10" | |
type: "BatchNorm" | |
bottom: "conv10" | |
top: "conv10" | |
} | |
layer { | |
name: "scale10" | |
type: "Scale" | |
bottom: "conv10" | |
top: "conv10" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu10" | |
type: "ReLU" | |
bottom: "conv10" | |
top: "conv10" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv11" | |
type: "Convolution" | |
bottom: "conv10" | |
top: "conv11" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn11" | |
type: "BatchNorm" | |
bottom: "conv11" | |
top: "conv11" | |
} | |
layer { | |
name: "scale11" | |
type: "Scale" | |
bottom: "conv11" | |
top: "conv11" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu11" | |
type: "ReLU" | |
bottom: "conv11" | |
top: "conv11" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv12" | |
type: "Convolution" | |
bottom: "conv11" | |
top: "conv12" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn12" | |
type: "BatchNorm" | |
bottom: "conv12" | |
top: "conv12" | |
} | |
layer { | |
name: "scale12" | |
type: "Scale" | |
bottom: "conv12" | |
top: "conv12" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu12" | |
type: "ReLU" | |
bottom: "conv12" | |
top: "conv12" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv13" | |
type: "Convolution" | |
bottom: "conv12" | |
top: "conv13" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn13" | |
type: "BatchNorm" | |
bottom: "conv13" | |
top: "conv13" | |
} | |
layer { | |
name: "scale13" | |
type: "Scale" | |
bottom: "conv13" | |
top: "conv13" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu13" | |
type: "ReLU" | |
bottom: "conv13" | |
top: "conv13" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool13" | |
type: "Pooling" | |
bottom: "conv13" | |
top: "pool13" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv14" | |
type: "Convolution" | |
bottom: "pool13" | |
top: "conv14" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn14" | |
type: "BatchNorm" | |
bottom: "conv14" | |
top: "conv14" | |
} | |
layer { | |
name: "scale14" | |
type: "Scale" | |
bottom: "conv14" | |
top: "conv14" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu14" | |
type: "ReLU" | |
bottom: "conv14" | |
top: "conv14" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv15" | |
type: "Convolution" | |
bottom: "conv14" | |
top: "conv15" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn15" | |
type: "BatchNorm" | |
bottom: "conv15" | |
top: "conv15" | |
} | |
layer { | |
name: "scale15" | |
type: "Scale" | |
bottom: "conv15" | |
top: "conv15" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu15" | |
type: "ReLU" | |
bottom: "conv15" | |
top: "conv15" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv16" | |
type: "Convolution" | |
bottom: "conv15" | |
top: "conv16" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn16" | |
type: "BatchNorm" | |
bottom: "conv16" | |
top: "conv16" | |
} | |
layer { | |
name: "scale16" | |
type: "Scale" | |
bottom: "conv16" | |
top: "conv16" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu16" | |
type: "ReLU" | |
bottom: "conv16" | |
top: "conv16" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv17" | |
type: "Convolution" | |
bottom: "conv16" | |
top: "conv17" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn17" | |
type: "BatchNorm" | |
bottom: "conv17" | |
top: "conv17" | |
} | |
layer { | |
name: "scale17" | |
type: "Scale" | |
bottom: "conv17" | |
top: "conv17" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu17" | |
type: "ReLU" | |
bottom: "conv17" | |
top: "conv17" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv18" | |
type: "Convolution" | |
bottom: "conv17" | |
top: "conv18" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn18" | |
type: "BatchNorm" | |
bottom: "conv18" | |
top: "conv18" | |
} | |
layer { | |
name: "scale18" | |
type: "Scale" | |
bottom: "conv18" | |
top: "conv18" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu18" | |
type: "ReLU" | |
bottom: "conv18" | |
top: "conv18" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv19" | |
type: "Convolution" | |
bottom: "conv18" | |
top: "conv19" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn19" | |
type: "BatchNorm" | |
bottom: "conv19" | |
top: "conv19" | |
} | |
layer { | |
name: "scale19" | |
type: "Scale" | |
bottom: "conv19" | |
top: "conv19" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu19" | |
type: "ReLU" | |
bottom: "conv19" | |
top: "conv19" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv20" | |
type: "Convolution" | |
bottom: "conv19" | |
top: "conv20" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn20" | |
type: "BatchNorm" | |
bottom: "conv20" | |
top: "conv20" | |
} | |
layer { | |
name: "scale20" | |
type: "Scale" | |
bottom: "conv20" | |
top: "conv20" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu20" | |
type: "ReLU" | |
bottom: "conv20" | |
top: "conv20" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "reorg1" | |
type: "Reorg" | |
bottom: "conv13" | |
top: "reorg1" | |
reorg_param { | |
stride: 2 | |
} | |
} | |
layer { | |
name: "concat1" | |
type: "Concat" | |
bottom: "reorg1" | |
bottom: "conv20" | |
top: "concat1" | |
} | |
layer{ | |
name: "conv21" | |
type: "Convolution" | |
bottom: "concat1" | |
top: "conv21" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "bn21" | |
type: "BatchNorm" | |
bottom: "conv21" | |
top: "conv21" | |
} | |
layer { | |
name: "scale21" | |
type: "Scale" | |
bottom: "conv21" | |
top: "conv21" | |
param { # scale | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { # bias | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu21" | |
type: "ReLU" | |
bottom: "conv21" | |
top: "conv21" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv22" | |
type: "Convolution" | |
bottom: "conv21" | |
top: "conv22" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 125 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
# bias_term: false | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
#permute maybe cannot be inner layer | |
layer{ | |
name: "permute" | |
type: "Permute" | |
bottom: "conv22" | |
top: "permute_conv22" | |
permute_param {order: 0 order: 2 order: 3 order: 1} | |
} | |
layer { | |
name: "det_loss" | |
type: "RegionLoss" | |
bottom: "permute_conv22" | |
bottom: "label" | |
top: "det_loss" | |
loss_weight: 1 | |
# include { | |
# phase: TRAIN | |
# } | |
region_loss_param { | |
boxes_of_each_grid: 5 | |
classes: 20 | |
thres_iou: 0.6 | |
object_scale: 5.0 | |
noobject_scale: 0.1 | |
class_scale: 1.0 | |
coord_scale: 1.0 | |
bias_match: true | |
rescore: true | |
softmax: true | |
anchor_coords {pw: 1.08 ph: 1.19} | |
anchor_coords {pw: 3.42 ph: 4.41} | |
anchor_coords {pw: 6.63 ph: 11.38} | |
anchor_coords {pw: 9.42 ph: 5.11} | |
anchor_coords {pw: 16.62 ph: 10.52} | |
} | |
} | |
layer { | |
name: "eval_det" | |
type: "EvalDetection" | |
bottom: "permute_conv22" | |
bottom: "label" | |
top: "eval_det" | |
include { | |
phase: TEST | |
} | |
eval_detection_param { | |
softmax: true | |
classes: 20 | |
boxes_of_each_grid: 5 | |
thres_nms: 0.4 | |
thres_prob: 0.20 | |
anchor_coords {pw: 1.08 ph: 1.19} | |
anchor_coords {pw: 3.42 ph: 4.41} | |
anchor_coords {pw: 6.63 ph: 11.38} | |
anchor_coords {pw: 9.42 ph: 5.11} | |
anchor_coords {pw: 16.62 ph: 10.52} | |
score_type: MULTIPLY | |
#score_type: OBJ | |
#score_type: PROB | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment