Created
May 24, 2017 13:01
-
-
Save huynhnguyen/7d824ebb3834346c4a882f194f9a909b to your computer and use it in GitHub Desktop.
open journal (24/5/217): orthogonal initializer for lstm with tensorflow 1.10.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def orthogonal_initializer(scale=1.0, seed=None, dtype=tf.float32): | |
def _initializer(shape, dtype=dtype, partition_info=None): | |
flat = (shape[0], np.prod(shape[1:])) | |
a = np.random.normal(0.0, 1.0, flat) | |
u, _, v = np.linalg.svd(a, full_matrices=False) | |
q = (u if u.shape == flat else v).reshape(shape) | |
return tf.constant(scale * q[:shape[0], :shape[1]], dtype=dtype) | |
return _initializer | |
tf.reset_default_graph() | |
ortho_initializer = orthogonal_initializer() | |
with tf.variable_scope('e',reuse=None): | |
encode_cell = tf.contrib.rnn.LSTMCell(num_units= 10, initializer=ortho_initializer) | |
inpt = tf.constant([[1,2,3,4,5,6,7,8,9,10]],dtype=tf.float32) | |
zero = encode_cell.zero_state(1,tf.float32) | |
outp = encode_cell(inpt,zero) | |
with tf.Session() as sess: | |
tf.global_variables_initializer().run() | |
print sess.run(outp) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment