Created
June 12, 2020 05:48
-
-
Save hvy/2bcfb6f8bf324b056d473455a91ab499 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import optuna | |
from optuna import visualization | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torch.utils.data | |
from torchvision import datasets | |
from torchvision import transforms | |
DEVICE = torch.device('cpu') | |
CLASSES = 10 | |
# DIR = os.getcwd() | |
DIR = '../optuna' | |
EPOCHS = 20 | |
def define_model(trial): | |
layers = [] | |
in_features = 28 * 28 | |
for i in range(2): | |
out_features = trial.suggest_int('n_units_l{}'.format(i), 4, 128) | |
activation = trial.suggest_categorical( | |
'activation_l{}'.format(i), choices=['relu', 'tanh']) | |
p = trial.suggest_uniform('dropout_l{}'.format(i), 0.2, 0.5) | |
layers.append(nn.Linear(in_features, out_features)) | |
if activation == 'relu': | |
layers.append(nn.ReLU()) | |
elif activation == 'tanh': | |
layers.append(nn.Tanh()) | |
else: | |
assert False | |
layers.append(nn.Dropout(p)) | |
in_features = out_features | |
layers.append(nn.Linear(in_features, CLASSES)) | |
layers.append(nn.LogSoftmax(dim=1)) | |
return nn.Sequential(*layers) | |
def get_mnist(trial): | |
batch_size = trial.suggest_categorical( | |
'batch_size', choices=[8, 16, 32, 64, 128]) | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST( | |
DIR, train=True, download=True, transform=transforms.ToTensor()), | |
batch_size=batch_size, | |
shuffle=True, | |
) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST( | |
DIR, train=False, transform=transforms.ToTensor()), | |
batch_size=batch_size, | |
shuffle=True, | |
) | |
return train_loader, test_loader | |
def objective(trial): | |
model = define_model(trial).to(DEVICE) | |
optimizer_name = trial.suggest_categorical( | |
'optimizer', ['Adam', 'RMSprop', 'SGD']) | |
lr = trial.suggest_loguniform('lr', 1e-5, 1e-1) | |
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr) | |
train_loader, test_loader = get_mnist(trial) | |
model.train() | |
for epoch in range(EPOCHS): | |
epoch_loss = 0 | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
epoch_loss += loss.data | |
loss.backward() | |
optimizer.step() | |
epoch_loss /= len(train_loader.dataset) | |
print('Epoch {}: {}'.format(epoch, epoch_loss)) | |
trial.report(epoch_loss, step=epoch) | |
model.eval() | |
correct = 0 | |
with torch.no_grad(): | |
for batch_idx, (data, target) in enumerate(test_loader): | |
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE) | |
output = model(data) | |
pred = output.argmax(dim=1, keepdim=True) | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
accuracy = correct / len(test_loader.dataset) | |
return accuracy | |
if __name__ == '__main__': | |
study = optuna.create_study( | |
sampler=optuna.samplers.RandomSampler(), | |
direction='maximize', | |
) | |
print('Number of trials', len(study.trials)) | |
for t in study.trials: | |
print(t.number, t.params) | |
study.optimize(objective, n_trials=100) | |
evaluator = optuna.importance.MeanDecreaseImpurityImportanceEvaluator() | |
importances = optuna.importance.get_param_importances(study, evaluator=evaluator) | |
print('Importances', importances) | |
fig = optuna.visualization.plot_param_importances(study, evaluator=evaluator) | |
fig.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment