Created
December 5, 2017 03:54
-
-
Save hylowaker/8da1be2c4a71bfccc426bac802c1ee20 to your computer and use it in GitHub Desktop.
HMM Viterbi & Forward Algorithm tutorial
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
class HMM(object): | |
def __init__(self, initial_prob, trans_prob, obs_prob): | |
self.N = np.size(initial_prob) | |
self.initial_prob = initial_prob | |
self.trans_prob = trans_prob | |
self.emission = tf.constant(obs_prob) | |
assert self.initial_prob.shape == (self.N, 1) | |
assert self.trans_prob.shape == (self.N, self.N) | |
assert obs_prob.shape[0] == self.N | |
self.viterbi = tf.placeholder(tf.float64) | |
self.obs_idx = tf.placeholder(tf.int32) | |
self.fwd = tf.placeholder(tf.float64) | |
def get_emission(self, obs_idx): | |
slice_location = [0, obs_idx] | |
num_rows = tf.shape(self.emission)[0] | |
slice_shape = [num_rows, 1] | |
return tf.slice(self.emission, slice_location, slice_shape) | |
def forward_init_op(self): | |
obs_prob = self.get_emission(self.obs_idx) | |
fwd = tf.multiply(self.initial_prob, obs_prob) | |
return fwd | |
def forward_op(self): | |
transitions = tf.matmul(self.fwd, tf.transpose(self.get_emission(self.obs_idx))) | |
weighted_transitions = transitions * self.trans_prob | |
fwd = tf.reduce_sum(weighted_transitions, 0) | |
return tf.reshape(fwd, tf.shape(self.fwd)) | |
def decode_op(self): | |
transitions = tf.matmul(self.viterbi, tf.transpose(self.get_emission(self.obs_idx))) | |
weighted_transitions = transitions * self.trans_prob | |
viterbi = tf.reduce_max(weighted_transitions, 0) # y축에 대해서 가장 max 값을 찾음 | |
return tf.reshape(viterbi, tf.shape(self.viterbi)) # reshape = 1*2 행렬을 2*1 행렬로 바꿔준다. | |
def backpt_op(self): | |
back_transitions = tf.matmul(self.viterbi, np.ones((1, self.N))) # 2x1 * 1x2 = 2x2 | |
weighted_back_transitions = back_transitions * self.trans_prob | |
return tf.argmax(weighted_back_transitions, 0) # 가장 큰 값을 가진 index 행렬을 리턴한다. | |
def viterbi_decode(sess, hmm, observations): | |
viterbi = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs_idx: observations[0]}) # 0.6 * 0.5, 0.4 * 0.1 행렬 | |
backpts = np.ones((hmm.N, len(observations)), 'int32') * -1 #2x5의 -1행렬 | |
for t in range(1, len(observations)): | |
viterbi, backpt = sess.run([hmm.decode_op(), hmm.backpt_op()], | |
feed_dict={hmm.obs_idx: observations[t], | |
hmm.viterbi: viterbi}) | |
backpts[:,t] = backpt | |
tokens = [viterbi[:, -1].argmax()] | |
for i in range(len(observations) -1, 0, -1): | |
tokens.append(backpts[tokens[-1], i]) | |
return tokens[::-1] | |
def forward_algorithm(sess, hmm, observations): | |
fwd = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs_idx: observations[0]}) | |
for t in range(1, len(observations)): | |
fwd = sess.run(hmm.forward_op(), feed_dict={hmm.obs_idx: observations[t], hmm.fwd:fwd}) | |
prob = sess.run(tf.reduce_sum(fwd)) | |
return prob | |
# initial_prob = np.array([[0.6], [0.4]]) | |
# trans_prob = np.array([[0.7, 0.3], [0.4, 0.6]]) | |
# obs_prob = np.array([[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]]) | |
initial_prob = np.array([[0.9], [0.05], [0.05]]) | |
trans_prob = np.array([[0.9, 0.05, 0.05], [0.9, 0.05, 0.05], [0.9, 0.05, 0.05]]) | |
obs_prob = np.array([[0.5, 0.5], [0.75, 0.25], [0.25, 0.75]]) | |
hmm = HMM(initial_prob=initial_prob, trans_prob=trans_prob, obs_prob=obs_prob) | |
# observations = [0, 1, 1, 2, 1] | |
observations = [0] | |
with tf.Session() as sess: | |
seq = viterbi_decode(sess, hmm, observations) | |
print('Most likely hidden states are {}'.format(seq)) | |
with tf.Session() as sess: | |
prob = forward_algorithm(sess, hmm, observations) | |
print('Probability of observing {} is {}'.format(observations, prob)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment