Created
August 18, 2020 04:36
-
-
Save hypoxic/9c28d452983494fd533a2bcb18834671 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/***************************************************************************** | |
* aes-min.c | |
* | |
* Minimal byte-oriented AES-128 encryption/decryption implementation suitable | |
* for small microprocessors. | |
****************************************************************************/ | |
/***************************************************************************** | |
* Includes | |
****************************************************************************/ | |
#include "aes-min.h" | |
#include <string.h> | |
/***************************************************************************** | |
* Defines | |
****************************************************************************/ | |
#define AES_KEY_SCHEDULE_FIRST_RCON 1u | |
#define AES128_KEY_SCHEDULE_LAST_RCON 54u | |
#define AES_REDUCE_BYTE 0x1Bu | |
#define AES_2_INVERSE 141u | |
#define AES_INV_CHAIN_LEN 11u | |
/***************************************************************************** | |
* Look-up tables | |
****************************************************************************/ | |
#ifndef ENABLE_SBOX_SMALL | |
static const uint8_t aes_sbox_table[256u] = | |
{ | |
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, | |
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, | |
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, | |
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, | |
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, | |
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, | |
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, | |
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, | |
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, | |
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, | |
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, | |
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, | |
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, | |
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, | |
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, | |
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 | |
}; | |
static const uint8_t aes_sbox_inv_table[256u] = | |
{ | |
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, | |
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, | |
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, | |
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, | |
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, | |
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, | |
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, | |
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, | |
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, | |
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, | |
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, | |
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, | |
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, | |
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, | |
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, | |
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D | |
}; | |
#endif | |
/***************************************************************************** | |
* Local function prototypes | |
****************************************************************************/ | |
static void aes128_key_schedule_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon); | |
void aes128_key_schedule_inv_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon); | |
static uint8_t aes_mul(uint8_t a, uint8_t b); | |
static uint8_t aes_inv(uint8_t a); | |
static uint8_t aes_sbox(uint8_t a); | |
static uint8_t aes_sbox_inv(uint8_t a); | |
static void aes_sbox_apply_block(uint8_t p_block[AES_BLOCK_SIZE]); | |
static void aes_sbox_inv_apply_block(uint8_t p_block[AES_BLOCK_SIZE]); | |
static void aes_shift_rows(uint8_t p_block[AES_BLOCK_SIZE]); | |
static void aes_shift_rows_inv(uint8_t p_block[AES_BLOCK_SIZE]); | |
static void aes_mix_columns(uint8_t p_block[AES_BLOCK_SIZE]); | |
static void aes_mix_columns_inv(uint8_t p_block[AES_BLOCK_SIZE]); | |
/***************************************************************************** | |
* Inline functions | |
****************************************************************************/ | |
#if 0 | |
/* This is probably the most straight-forward expression of the algorithm. | |
* This seems more likely to have variable timing, although inspection | |
* of compiled code would be needed to confirm it. | |
* It is more likely to have variable timing when no optimisations are | |
* enabled. */ | |
static inline uint8_t aes_mul2(uint8_t a) | |
{ | |
uint8_t result; | |
result = a << 1u; | |
if (a & 0x80u) | |
result ^= AES_REDUCE_BYTE; | |
return result; | |
} | |
static inline uint8_t aes_div2(uint8_t a) | |
{ | |
uint8_t result; | |
result = a >> 1u; | |
if (a & 1u) | |
result ^= AES_2_INVERSE; | |
return result; | |
} | |
#elif 0 | |
/* This hopefully has fixed timing, although inspection | |
* of compiled code would be needed to confirm it. */ | |
static inline uint8_t aes_mul2(uint8_t a) | |
{ | |
static const uint8_t reduce[2] = { 0, AES_REDUCE_BYTE }; | |
return (a << 1u) ^ reduce[a >= 0x80u]; | |
} | |
static inline uint8_t aes_div2(uint8_t a) | |
{ | |
static const uint8_t reduce[2] = { 0, AES_2_INVERSE }; | |
return (a >> 1u) ^ reduce[a & 1u]; | |
} | |
#else | |
/* This hopefully has fixed timing, although inspection | |
* of compiled code would be needed to confirm it. */ | |
static inline uint8_t aes_mul2(uint8_t a) | |
{ | |
return (a << 1u) ^ ((-(a >= 0x80u)) & AES_REDUCE_BYTE); | |
} | |
static inline uint8_t aes_div2(uint8_t a) | |
{ | |
return (a >> 1u) ^ ((-(a & 1u)) & AES_2_INVERSE); | |
} | |
#endif | |
/* Hopefully the compiler reduces this to a single rotate instruction. | |
* However in testing with gcc on x86-64, it didn't happen. But it is target- | |
* and compiler-specific. | |
* | |
* Alternatively for a particular platform: | |
* - Use an intrinsic 8-bit rotate function provided by the compiler. | |
* - Use inline assembler. | |
* | |
* TODO: Examine code produced on the target platform. | |
*/ | |
static inline uint8_t aes_rotate_left_uint8(uint8_t a, uint_fast8_t num_bits) | |
{ | |
return ((a << num_bits) | (a >> (8u - num_bits))); | |
} | |
/***************************************************************************** | |
* Functions | |
****************************************************************************/ | |
/* AES-128 encryption. | |
* | |
* p_block points to a 16-byte buffer of plain data to encrypt. Encryption | |
* is done in-place in that buffer. | |
* p_key_schedule points to a pre-calculated key schedule, which can be | |
* calculated by aes128_key_schedule(). | |
*/ | |
void aes128_encrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE]) | |
{ | |
uint_fast8_t round; | |
aes_block_xor(p_block, p_key_schedule); | |
for (round = 1; round < AES128_NUM_ROUNDS; ++round) | |
{ | |
aes_sbox_apply_block(p_block); | |
aes_shift_rows(p_block); | |
aes_mix_columns(p_block); | |
aes_block_xor(p_block, &p_key_schedule[round * AES_BLOCK_SIZE]); | |
} | |
aes_sbox_apply_block(p_block); | |
aes_shift_rows(p_block); | |
aes_block_xor(p_block, &p_key_schedule[AES128_NUM_ROUNDS * AES_BLOCK_SIZE]); | |
} | |
/* AES-128 decryption. | |
* | |
* p_block points to a 16-byte buffer of encrypted data to decrypt. Decryption | |
* is done in-place in that buffer. | |
* p_key_schedule points to a pre-calculated key schedule, which can be | |
* calculated by aes128_key_schedule(). | |
*/ | |
void aes128_decrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE]) | |
{ | |
uint_fast8_t round; | |
aes_block_xor(p_block, &p_key_schedule[AES128_NUM_ROUNDS * AES_BLOCK_SIZE]); | |
aes_shift_rows_inv(p_block); | |
aes_sbox_inv_apply_block(p_block); | |
for (round = AES128_NUM_ROUNDS - 1u; round >= 1; --round) | |
{ | |
aes_block_xor(p_block, &p_key_schedule[round * AES_BLOCK_SIZE]); | |
aes_mix_columns_inv(p_block); | |
aes_shift_rows_inv(p_block); | |
aes_sbox_inv_apply_block(p_block); | |
} | |
aes_block_xor(p_block, p_key_schedule); | |
} | |
void aes128_key_schedule(uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE], const uint8_t p_key[AES128_KEY_SIZE]) | |
{ | |
uint_fast8_t round; | |
uint8_t * p_key_0 = p_key_schedule + AES128_KEY_SIZE; | |
uint8_t temp_byte; | |
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON; | |
/* Initial part of key schedule is simply the AES-128 key copied verbatim. */ | |
memcpy(p_key_schedule, p_key, AES128_KEY_SIZE); | |
for (round = 0; round < (AES128_KEY_SCHEDULE_SIZE - AES128_KEY_SIZE) / AES_KEY_SCHEDULE_WORD_SIZE; ++round) | |
{ | |
memcpy(p_key_0, p_key_0 - AES_KEY_SCHEDULE_WORD_SIZE, AES_KEY_SCHEDULE_WORD_SIZE); | |
if ((round % (AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE)) == 0) | |
{ | |
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */ | |
temp_byte = p_key_0[0]; | |
p_key_0[0] = aes_sbox(p_key_0[1]) ^ rcon; | |
p_key_0[1] = aes_sbox(p_key_0[2]); | |
p_key_0[2] = aes_sbox(p_key_0[3]); | |
p_key_0[3] = aes_sbox(temp_byte); | |
/* Next rcon */ | |
rcon = aes_mul2(rcon); | |
} | |
/* XOR in bytes from AES128_KEY_SIZE bytes ago */ | |
p_key_0[0] ^= p_key_0[0 - (signed)AES128_KEY_SIZE]; | |
p_key_0[1] ^= p_key_0[1 - (signed)AES128_KEY_SIZE]; | |
p_key_0[2] ^= p_key_0[2 - (signed)AES128_KEY_SIZE]; | |
p_key_0[3] ^= p_key_0[3 - (signed)AES128_KEY_SIZE]; | |
p_key_0 += AES_KEY_SCHEDULE_WORD_SIZE; | |
} | |
} | |
/* AES-128 encryption with on-the-fly key schedule calculation. | |
* | |
* p_block points to a 16-byte buffer of plain data to encrypt. Encryption | |
* is done in-place in that buffer. | |
* p_key must initially point to a starting key state for encryption, which is | |
* simply the 16 bytes of the AES-128 key. Key schedule is calculated on-the- | |
* fly in that buffer, so the buffer must re-initialised for subsequent | |
* encryption operations. | |
*/ | |
void aes128_otfks_encrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_key[AES128_KEY_SIZE]) | |
{ | |
uint_fast8_t round; | |
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON; | |
aes_block_xor(p_block, p_key); | |
for (round = 1; round < AES128_NUM_ROUNDS; ++round) | |
{ | |
aes128_key_schedule_round(p_key, rcon); | |
aes_sbox_apply_block(p_block); | |
aes_shift_rows(p_block); | |
aes_mix_columns(p_block); | |
aes_block_xor(p_block, p_key); | |
/* Next rcon */ | |
rcon = aes_mul2(rcon); | |
} | |
aes128_key_schedule_round(p_key, rcon); | |
aes_sbox_apply_block(p_block); | |
aes_shift_rows(p_block); | |
aes_block_xor(p_block, p_key); | |
} | |
/* Calculate the starting key state needed for decryption with on-the-fly key | |
* schedule calculation. The starting decryption key state is the last 16 bytes | |
* of the AES-128 key schedule. | |
* The decryption start key calculation is done in-place in the buffer p_key[]. | |
* So p_key points to a 16-byte buffer containing the AES-128 key. On exit, it | |
* contains the decryption start key state suitable for aes128_otfks_decrypt(). | |
*/ | |
void aes128_otfks_decrypt_start_key(uint8_t p_key[AES128_KEY_SIZE]) | |
{ | |
uint_fast8_t round; | |
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON; | |
for (round = 0; round < AES128_NUM_ROUNDS; ++round) | |
{ | |
aes128_key_schedule_round(p_key, rcon); | |
/* Next rcon */ | |
rcon = aes_mul2(rcon); | |
} | |
} | |
/* AES-128 decryption with on-the-fly key schedule calculation. | |
* | |
* p_block points to a 16-byte buffer of encrypted data to decrypt. Decryption | |
* is done in-place in that buffer. | |
* p_key must initially point to a starting key state for decryption, which is | |
* the last 16 bytes of the AES-128 key schedule. It can be calculated from the | |
* AES-128 16-byte key by aes128_otfks_decrypt_start_key(). Key schedule is | |
* calculated on-the-fly in that buffer, so the buffer must re-initialised for | |
* subsequent decryption operations. | |
*/ | |
void aes128_otfks_decrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_key[AES128_KEY_SIZE]) | |
{ | |
uint_fast8_t round; | |
uint8_t rcon = AES128_KEY_SCHEDULE_LAST_RCON; | |
aes_block_xor(p_block, p_key); | |
aes_shift_rows_inv(p_block); | |
aes_sbox_inv_apply_block(p_block); | |
for (round = AES128_NUM_ROUNDS - 1u; round >= 1; --round) | |
{ | |
aes128_key_schedule_inv_round(p_key, rcon); | |
aes_block_xor(p_block, p_key); | |
aes_mix_columns_inv(p_block); | |
aes_shift_rows_inv(p_block); | |
aes_sbox_inv_apply_block(p_block); | |
/* Previous rcon */ | |
rcon = aes_div2(rcon); | |
} | |
aes128_key_schedule_inv_round(p_key, rcon); | |
aes_block_xor(p_block, p_key); | |
} | |
uint8_t _aes_inv_for_test(uint8_t a) | |
{ | |
return aes_inv(a); | |
} | |
void _aes_sbox_apply_block_for_test(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
aes_sbox_apply_block(p_block); | |
} | |
/***************************************************************************** | |
* Local functions | |
****************************************************************************/ | |
/* This is used for aes128_otfks_encrypt(), on-the-fly key schedule encryption. | |
* It is also used by aes128_otfks_decrypt_start_key() to calculate the | |
* starting key state for decryption with on-the-fly key schedule calculation. | |
* rcon for the round must be provided, out of the sequence: | |
* 1, 2, 4, 8, 16, 32, 64, 128, 27, 54 | |
* Subsequent values can be calculated with aes_mul2(). | |
*/ | |
static void aes128_key_schedule_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon) | |
{ | |
uint_fast8_t round; | |
uint8_t * p_key_0 = p_key; | |
uint8_t * p_key_m1 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE; | |
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */ | |
p_key_0[0] ^= aes_sbox(p_key_m1[1]) ^ rcon; | |
p_key_0[1] ^= aes_sbox(p_key_m1[2]); | |
p_key_0[2] ^= aes_sbox(p_key_m1[3]); | |
p_key_0[3] ^= aes_sbox(p_key_m1[0]); | |
for (round = 1; round < AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE; ++round) | |
{ | |
p_key_m1 = p_key_0; | |
p_key_0 += AES_KEY_SCHEDULE_WORD_SIZE; | |
/* XOR in previous word */ | |
p_key_0[0] ^= p_key_m1[0]; | |
p_key_0[1] ^= p_key_m1[1]; | |
p_key_0[2] ^= p_key_m1[2]; | |
p_key_0[3] ^= p_key_m1[3]; | |
} | |
} | |
/* This is used for aes128_otfks_decrypt(), on-the-fly key schedule decryption. | |
* rcon for the round must be provided, out of the sequence: | |
* 54, 27, 128, 64, 32, 16, 8, 4, 2, 1 | |
* Subsequent values can be calculated with aes_div2(). | |
*/ | |
void aes128_key_schedule_inv_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon) | |
{ | |
uint_fast8_t round; | |
uint8_t * p_key_0 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE; | |
uint8_t * p_key_m1 = p_key_0 - AES_KEY_SCHEDULE_WORD_SIZE; | |
for (round = 1; round < AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE; ++round) | |
{ | |
/* XOR in previous word */ | |
p_key_0[0] ^= p_key_m1[0]; | |
p_key_0[1] ^= p_key_m1[1]; | |
p_key_0[2] ^= p_key_m1[2]; | |
p_key_0[3] ^= p_key_m1[3]; | |
p_key_0 = p_key_m1; | |
p_key_m1 -= AES_KEY_SCHEDULE_WORD_SIZE; | |
} | |
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */ | |
p_key_m1 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE; | |
p_key_0[0] ^= aes_sbox(p_key_m1[1]) ^ rcon; | |
p_key_0[1] ^= aes_sbox(p_key_m1[2]); | |
p_key_0[2] ^= aes_sbox(p_key_m1[3]); | |
p_key_0[3] ^= aes_sbox(p_key_m1[0]); | |
} | |
/* Multiply two numbers in Galois field GF(2^8) with reduction polynomial | |
* 0x11B. | |
* TODO: To prevent timing attacks, analyse the compiler-generated code | |
* to see if it has constant execution time regardless of input values. | |
*/ | |
static uint8_t aes_mul(uint8_t a, uint8_t b) | |
{ | |
uint8_t result = 0; | |
uint_fast8_t i; | |
for (i = 0; i < 8u; i++) | |
{ | |
#if 0 | |
/* This code variant is less likely to have constant execution time, | |
* and thus more likely to be vulnerable to timing attacks. */ | |
if (b & 1) | |
{ | |
result ^= a; | |
} | |
#else | |
result ^= (-(b & 1u)) & a; | |
#endif | |
a = aes_mul2(a); | |
b >>= 1; | |
} | |
return result; | |
} | |
/* Calculation of inverse in GF(2^8), by exponentiation to power 254. | |
* Use minimal addition chain to raise to the power of 254, which requires | |
* 11 multiplies. | |
* There are many addition chains of length 11 for 254. This one was picked | |
* because it has the most multiplies by the previous value, and least | |
* references to earlier history, which in theory could minimise the size of | |
* prev_values[]. However, in the end we do the simplest possible | |
* implementation of the algorithm to minimise code size (because aes_inv() is | |
* used to achieve smallest possible S-box implementation), so it doesn't | |
* really matter which addition chain we pick. | |
*/ | |
static uint8_t aes_inv(uint8_t a) | |
{ | |
static const uint8_t addition_chain_idx[AES_INV_CHAIN_LEN] = { 0, 1, 1, 3, 4, 3, 6, 7, 3, 9, 1 }; | |
uint_fast8_t i; | |
uint8_t prev_values[AES_INV_CHAIN_LEN]; | |
for (i = 0; i < AES_INV_CHAIN_LEN; i++) | |
{ | |
prev_values[i] = a; | |
a = aes_mul(a, prev_values[addition_chain_idx[i]]); | |
} | |
return a; | |
} | |
#ifdef ENABLE_SBOX_SMALL | |
static uint8_t aes_sbox(uint8_t a) | |
{ | |
uint8_t x; | |
a = aes_inv(a); | |
x = aes_rotate_left_uint8(a, 1u); | |
x ^= aes_rotate_left_uint8(x, 1u); | |
x ^= aes_rotate_left_uint8(x, 2u); | |
return a ^ x ^ 0x63u; | |
} | |
static uint8_t aes_sbox_inv(uint8_t a) | |
{ | |
uint8_t x; | |
x = aes_rotate_left_uint8(a, 1u); | |
a = aes_rotate_left_uint8(x, 2u); | |
x ^= a; | |
a = aes_rotate_left_uint8(a, 3u); | |
return aes_inv(a ^ x ^ 0x05u); | |
} | |
#else /* ENABLE_SBOX_SMALL */ | |
static uint8_t aes_sbox(uint8_t a) | |
{ | |
return aes_sbox_table[a]; | |
} | |
static uint8_t aes_sbox_inv(uint8_t a) | |
{ | |
return aes_sbox_inv_table[a]; | |
} | |
#endif /* ENABLE_SBOX_SMALL */ | |
static void aes_sbox_apply_block(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint_fast8_t i; | |
for (i = 0; i < AES_BLOCK_SIZE; ++i) | |
{ | |
p_block[i] = aes_sbox(p_block[i]); | |
} | |
} | |
static void aes_sbox_inv_apply_block(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint_fast8_t i; | |
for (i = 0; i < AES_BLOCK_SIZE; ++i) | |
{ | |
p_block[i] = aes_sbox_inv(p_block[i]); | |
} | |
} | |
static void aes_shift_rows(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint8_t temp_byte; | |
/* First row doesn't shift */ | |
/* Shift the second row */ | |
temp_byte = p_block[0 * AES_COLUMN_SIZE + 1u]; | |
p_block[0 * AES_COLUMN_SIZE + 1u] = p_block[1u * AES_COLUMN_SIZE + 1u]; | |
p_block[1u * AES_COLUMN_SIZE + 1u] = p_block[2u * AES_COLUMN_SIZE + 1u]; | |
p_block[2u * AES_COLUMN_SIZE + 1u] = p_block[3u * AES_COLUMN_SIZE + 1u]; | |
p_block[3u * AES_COLUMN_SIZE + 1u] = temp_byte; | |
/* Shift the third row */ | |
temp_byte = p_block[0 * AES_COLUMN_SIZE + 2u]; | |
p_block[0 * AES_COLUMN_SIZE + 2u] = p_block[2u * AES_COLUMN_SIZE + 2u]; | |
p_block[2u * AES_COLUMN_SIZE + 2u] = temp_byte; | |
temp_byte = p_block[1u * AES_COLUMN_SIZE + 2u]; | |
p_block[1u * AES_COLUMN_SIZE + 2u] = p_block[3u * AES_COLUMN_SIZE + 2u]; | |
p_block[3u * AES_COLUMN_SIZE + 2u] = temp_byte; | |
/* Shift the fourth row */ | |
temp_byte = p_block[3u * AES_COLUMN_SIZE + 3u]; | |
p_block[3u * AES_COLUMN_SIZE + 3u] = p_block[2u * AES_COLUMN_SIZE + 3u]; | |
p_block[2u * AES_COLUMN_SIZE + 3u] = p_block[1u * AES_COLUMN_SIZE + 3u]; | |
p_block[1u * AES_COLUMN_SIZE + 3u] = p_block[0 * AES_COLUMN_SIZE + 3u]; | |
p_block[0 * AES_COLUMN_SIZE + 3u] = temp_byte; | |
} | |
static void aes_shift_rows_inv(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint8_t temp_byte; | |
/* First row doesn't shift */ | |
/* Shift the second row */ | |
temp_byte = p_block[3u * AES_COLUMN_SIZE + 1u]; | |
p_block[3u * AES_COLUMN_SIZE + 1u] = p_block[2u * AES_COLUMN_SIZE + 1u]; | |
p_block[2u * AES_COLUMN_SIZE + 1u] = p_block[1u * AES_COLUMN_SIZE + 1u]; | |
p_block[1u * AES_COLUMN_SIZE + 1u] = p_block[0 * AES_COLUMN_SIZE + 1u]; | |
p_block[0 * AES_COLUMN_SIZE + 1u] = temp_byte; | |
/* Shift the third row */ | |
temp_byte = p_block[0 * AES_COLUMN_SIZE + 2u]; | |
p_block[0 * AES_COLUMN_SIZE + 2u] = p_block[2u * AES_COLUMN_SIZE + 2u]; | |
p_block[2u * AES_COLUMN_SIZE + 2u] = temp_byte; | |
temp_byte = p_block[1u * AES_COLUMN_SIZE + 2u]; | |
p_block[1u * AES_COLUMN_SIZE + 2u] = p_block[3u * AES_COLUMN_SIZE + 2u]; | |
p_block[3u * AES_COLUMN_SIZE + 2u] = temp_byte; | |
/* Shift the fourth row */ | |
temp_byte = p_block[0 * AES_COLUMN_SIZE + 3u]; | |
p_block[0 * AES_COLUMN_SIZE + 3u] = p_block[1u * AES_COLUMN_SIZE + 3u]; | |
p_block[1u * AES_COLUMN_SIZE + 3u] = p_block[2u * AES_COLUMN_SIZE + 3u]; | |
p_block[2u * AES_COLUMN_SIZE + 3u] = p_block[3u * AES_COLUMN_SIZE + 3u]; | |
p_block[3u * AES_COLUMN_SIZE + 3u] = temp_byte; | |
} | |
static void aes_mix_columns(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint8_t temp_column[AES_COLUMN_SIZE]; | |
uint_fast8_t i; | |
uint_fast8_t j; | |
uint8_t byte_value; | |
uint8_t byte_value_2; | |
for (i = 0; i < AES_NUM_COLUMNS; i++) | |
{ | |
memset(temp_column, 0, AES_COLUMN_SIZE); | |
for (j = 0; j < AES_COLUMN_SIZE; j++) | |
{ | |
byte_value = p_block[i * AES_COLUMN_SIZE + j]; | |
byte_value_2 = aes_mul2(byte_value); | |
temp_column[(j + 0 ) % AES_COLUMN_SIZE] ^= byte_value_2; | |
temp_column[(j + 1u) % AES_COLUMN_SIZE] ^= byte_value; | |
temp_column[(j + 2u) % AES_COLUMN_SIZE] ^= byte_value; | |
temp_column[(j + 3u) % AES_COLUMN_SIZE] ^= byte_value ^ byte_value_2; | |
} | |
memcpy(&p_block[i * AES_COLUMN_SIZE], temp_column, AES_COLUMN_SIZE); | |
} | |
} | |
/* 14 = 1110b | |
* 9 = 1001b | |
* 13 = 1101b | |
* 11 = 1011b | |
*/ | |
static void aes_mix_columns_inv(uint8_t p_block[AES_BLOCK_SIZE]) | |
{ | |
uint8_t temp_column[AES_COLUMN_SIZE]; | |
uint_fast8_t i; | |
uint_fast8_t j; | |
uint8_t byte_value; | |
uint8_t byte_value_2; | |
uint8_t byte_value_4; | |
uint8_t byte_value_8; | |
for (i = 0; i < AES_NUM_COLUMNS; i++) | |
{ | |
memset(temp_column, 0, AES_COLUMN_SIZE); | |
for (j = 0; j < AES_COLUMN_SIZE; j++) | |
{ | |
byte_value = p_block[i * AES_COLUMN_SIZE + j]; | |
byte_value_2 = aes_mul2(byte_value); | |
byte_value_4 = aes_mul2(byte_value_2); | |
byte_value_8 = aes_mul2(byte_value_4); | |
temp_column[(j + 0 ) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_4 ^ byte_value_2; // 14 = 1110b | |
temp_column[(j + 1u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value; // 9 = 1001b | |
temp_column[(j + 2u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_4 ^ byte_value; // 13 = 1101b | |
temp_column[(j + 3u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_2 ^ byte_value; // 11 = 1011b | |
} | |
memcpy(&p_block[i * AES_COLUMN_SIZE], temp_column, AES_COLUMN_SIZE); | |
} | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/***************************************************************************** | |
* aes-min.h | |
* | |
* Minimal byte-oriented AES-128 encryption/decryption implementation suitable | |
* for small microprocessors. | |
****************************************************************************/ | |
#ifndef AES_MIN_H | |
#define AES_MIN_H | |
/***************************************************************************** | |
* Includes | |
****************************************************************************/ | |
#include <stdint.h> | |
/***************************************************************************** | |
* Defines | |
****************************************************************************/ | |
#define AES_BLOCK_SIZE 16u | |
#define AES_COLUMN_SIZE 4u | |
#define AES_NUM_COLUMNS 4u | |
#define AES_KEY_SCHEDULE_WORD_SIZE 4u | |
#define AES128_NUM_ROUNDS 10u | |
#define AES128_KEY_SIZE 16u | |
#define AES128_KEY_SCHEDULE_SIZE (AES_BLOCK_SIZE * (AES128_NUM_ROUNDS + 1u)) | |
/***************************************************************************** | |
* Inline functions | |
****************************************************************************/ | |
/* | |
* XOR the specified round key into the AES block. | |
* Fixed block size. | |
*/ | |
static inline void aes_block_xor(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_data[AES_BLOCK_SIZE]) | |
{ | |
uint_fast8_t i; | |
for (i = 0; i < AES_BLOCK_SIZE; ++i) | |
{ | |
p_block[i] ^= p_data[i]; | |
} | |
} | |
/***************************************************************************** | |
* Function prototypes | |
****************************************************************************/ | |
void aes128_encrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE]); | |
void aes128_decrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE]); | |
void aes128_key_schedule(uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE], const uint8_t p_key[AES128_KEY_SIZE]); | |
void aes128_otfks_encrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_key[AES128_KEY_SIZE]); | |
void aes128_otfks_decrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_decrypt_start_key[AES128_KEY_SIZE]); | |
void aes128_otfks_decrypt_start_key(uint8_t p_key[AES128_KEY_SIZE]); | |
void aes128_key_schedule_inv_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon); | |
#endif /* !defined(AES_MIN_H) */ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdint.h> | |
#include <string.h> | |
#include "aes-min.h" | |
// this is round 10 key schedule | |
uint8_t keyexpanded[AES128_KEY_SIZE] = {<your key here> }; | |
static void phex(uint8_t* str, int len) | |
{ | |
int i; | |
for (i = 0; i < len; i++){ | |
if(i && i % 16 == 0) | |
printf("\n"); | |
printf("%02x ",str[i]); | |
} | |
printf("\n"); | |
} | |
#define AES128_KEY_SCHEDULE_LAST_RCON 54u | |
#define AES_REDUCE_BYTE 0x1Bu | |
#define AES_2_INVERSE 141u | |
static inline uint8_t aes_div2b(uint8_t a) | |
{ | |
return (a >> 1u) ^ ((-(a & 1u)) & AES_2_INVERSE); | |
} | |
void inverse_key_schedule(uint8_t *p_reversed_key, const uint8_t *p_input_key, uint8_t rounds) | |
{ | |
uint8_t rcon = AES128_KEY_SCHEDULE_LAST_RCON; | |
memcpy(p_reversed_key, p_input_key, AES128_KEY_SIZE); | |
for(int i = rounds;i>0;i--) | |
{ | |
aes128_key_schedule_inv_round(p_reversed_key, rcon); | |
//printf("round %d\n", i); | |
//phex(p_key, AES128_KEY_SIZE); | |
/* Previous rcon */ | |
rcon = aes_div2b(rcon); | |
} | |
//aes128_key_schedule_inv_round(p_key, rcon); | |
} | |
void main(void) | |
{ | |
uint8_t recovered_key[AES128_KEY_SCHEDULE_SIZE]; | |
printf("trying key:\n"); | |
//phex(round10_key, AES128_KEY_SIZE); | |
inverse_key_schedule(recovered_key, keyexpanded, 10); | |
printf("reversed round 10:\n"); | |
phex(recovered_key, AES128_KEY_SIZE); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
C code to reverse key schedule based upon round 10 key. Python version available in chipwhisperer distro key_schedule.py