Created
August 1, 2017 09:01
-
-
Save hzhangxyz/be011043be150c5915ecbb55c6e2693d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import tensorflow as tf | |
from tensorflow.python import debug as tf_debug | |
D = 2 | |
t = -0.001 | |
with tf.name_scope("constant"): | |
H = tf.reshape(tf.constant([[0.25,0,0,0],[0,-0.25,0.5,0],[0,0.5,-0.25,0],[0,0,0,0.25]]),[2,2,2,2],name="Hamiltonian") | |
I = tf.reshape(tf.constant([[1.,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]),[2,2,2,2],"Identity") | |
expH = tf.exp(t*H,name="expH") | |
Z = tf.zeros(D,name="Zeros") | |
with tf.name_scope("variables"): | |
A = tf.Variable(tf.random_normal([D, D, 2], stddev=1),name="A") | |
B = tf.Variable(tf.random_normal([D, D, 2], stddev=1),name="B") | |
EAB = tf.Variable(tf.ones(D), name="EAB") | |
EBA = tf.Variable(tf.ones(D), name="EBA") | |
L = tf.Variable(tf.random_normal([D, D], stddev=1),name="L") | |
R = tf.Variable(tf.random_normal([D, D], stddev=1),name="R") | |
init = tf.global_variables_initializer() | |
def update(A,B,EAB,EBA,s): | |
label = "%s_H_%s"%(s[0],s[1]) | |
with tf.name_scope(label): | |
Sqrt_EBA = tf.sqrt(EBA,name="sqrt_%s"%s[3]) | |
EBA_A = tf.multiply(tf.reshape(Sqrt_EBA,[D,1,1]),A,name="%s_%s"%(s[3],s[0])) | |
EBA_A_EAB = tf.multiply(EBA_A,tf.reshape(EAB,[1,D,1]),name="%s_%s_%s"%(s[3],s[0],s[2])) | |
B_EBA = tf.multiply(B,tf.reshape(Sqrt_EBA,[1,D,1]),name="%s_%s"%(s[1],s[3])) | |
A_H = tf.tensordot(EBA_A_EAB,expH,[[2],[0]],name="%s_H"%s[0]) | |
BIG = tf.tensordot(A_H,B_EBA,[[1,2],[0,2]],name=label) # D 2 2 D | |
S, U, V = tf.svd(tf.reshape(BIG,[2*D,2*D]),name="%s_SVD"%label) # D 2 2D, 2D, 2D 2 D | |
for p in xrange(4): | |
tf.summary.scalar("s%d"%p,S[p]) | |
nEAB = tf.slice(S,[0],[D],name="n%s"%s[2]) #s[:D] | |
pre_reci = tf.reciprocal(Sqrt_EBA,name="pre_reci") # D | |
reci = tf.where(tf.is_inf(pre_reci),Z,pre_reci,name="%s_Eviron_Reci"%label) # D | |
nA = tf.transpose(tf.multiply(tf.reshape(U[:,:D],[D,2,D]),tf.reshape(reci,[D,1,1])),[0,2,1],name="n%s"%s[0]) | |
nB = tf.transpose(tf.multiply(tf.reshape(V[:D,:],[D,2,D]),tf.reshape(reci,[1,1,D])),[0,2,1],name="n%s"%s[1]) | |
return tf.assign(A,nA),tf.assign(B,nB),tf.assign(EAB,nEAB) | |
def normer(): | |
with tf.name_scope("Normer"): | |
nA = A/tf.norm(A) | |
nB = B/tf.norm(B) | |
nEAB = EAB/tf.norm(EAB) | |
nEBA = EBA/tf.norm(EBA) | |
return tf.assign(A,nA),tf.assign(B,nB),tf.assign(EAB,nEAB),tf.assign(EBA,nEBA) | |
updateAB = update(A,B,EAB,EBA,["A","B","EAB","EBA"]) | |
updateBA = update(B,A,EBA,EAB,["B","A","EBA","EAB"]) | |
normerize = normer() | |
with tf.name_scope("updateR"): | |
RB = tf.tensordot(tf.tensordot(R,B,[[1],[1]]),B,[[0,2],[1,2]],name="RB") | |
RBE = tf.multiply(tf.multiply(RB,tf.reshape(EAB,[D,1])),tf.reshape(EAB,[1,D]),name="RBE") | |
RBEA = tf.tensordot(tf.tensordot(RBE/tf.norm(RBE),A,[[1],[1]]),A,[[0,2],[1,2]],name="RBEA") | |
RBEAE = tf.multiply(tf.multiply(RBEA,tf.reshape(EBA,[D,1])),tf.reshape(EBA,[1,D]),name="RBEAE") | |
updateR = tf.assign(R,RBEAE/tf.norm(RBEAE)) | |
with tf.name_scope("updateL"): | |
LA = tf.tensordot(tf.tensordot(L,A,[[1],[0]]),A,[[0,2],[0,2]],name="RA") | |
LAE = tf.multiply(tf.multiply(LA,tf.reshape(EAB,[D,1])),tf.reshape(EAB,[1,D]),name="RAE") | |
LAEB = tf.tensordot(tf.tensordot(LAE/tf.norm(LAE),B,[[1],[0]]),B,[[0,2],[0,2]],name="RAEB") | |
LAEBE = tf.multiply(tf.multiply(LAEB,tf.reshape(EBA,[D,1])),tf.reshape(EBA,[1,D]),name="RAEBE") | |
updateL = tf.assign(L,LAEBE/tf.norm(LAEBE)) | |
with tf.name_scope("Energy"): | |
E_A = tf.multiply(A,tf.reshape(EAB,[1,D,1]),name="E_A") | |
H_LA = tf.tensordot(tf.tensordot(L,E_A,[[0],[0]]),E_A,[[0],[0]],name="H_LA") | |
H_LAH = tf.tensordot(H_LA,H,[[1,3],[0,2]],name="H_LAH") | |
H_LAHB = tf.tensordot(tf.tensordot(H_LAH,B,[[0,2],[0,2]]),B,[[0,1],[0,2]],name="H_LAHB") | |
H_LAHBR = tf.tensordot(H_LAHB,R,[[0,1],[0,1]],name="H_LAHBR") | |
I_LA = tf.tensordot(tf.tensordot(L,E_A,[[0],[0]]),E_A,[[0,2],[0,2]],name="I_LA") | |
I_LAB = tf.tensordot(tf.tensordot(I_LA,B,[[0],[0]]),B,[[0,2],[0,2]],name="I_LAB") | |
I_LABR = tf.tensordot(I_LAB,R,[[0,1],[0,1]],name="I_LAHBR") | |
E = H_LAHBR/I_LABR | |
tf.summary.scalar("E",E) | |
merged = tf.summary.merge_all() | |
sess = tf.Session() | |
sess.run(init) | |
logger = tf.summary.FileWriter("/tmp/data/",sess.graph) | |
sess = tf_debug.LocalCLIDebugWrapperSession(sess) | |
for i in xrange(1000): | |
sess.run(updateAB) | |
sess.run(normerize) | |
sess.run(updateBA) | |
sess.run(normerize) | |
sess.run(updateBA) | |
sess.run(normerize) | |
sess.run(updateAB) | |
sess.run(normerize) | |
sess.run(updateL) | |
sess.run(updateR) | |
logger.add_summary(sess.run(merged),i) | |
logger.flush() | |
print sess.run(E) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment