Last active
December 16, 2015 10:28
-
-
Save hzqtc/5420020 to your computer and use it in GitHub Desktop.
Compare two image mathematically using Perceptual Hash Algorithm. http://hzqtc.github.io/2013/04/image-duplication-detection.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
import sys | |
from PIL import Image | |
def avhash(im): | |
if not isinstance(im, Image.Image): | |
im = Image.open(im) | |
im = im.resize((8, 8), Image.ANTIALIAS).convert('L') | |
avg = reduce(lambda x, y: x + y, im.getdata()) / 64. | |
return reduce(lambda x, (y, z): x | (z << y), | |
enumerate(map(lambda i: 0 if i < avg else 1, im.getdata())), | |
0) | |
def hamming(h1, h2): | |
h, d = 0, h1 ^ h2 | |
while d: | |
h += 1 | |
d &= d - 1 | |
return h | |
if __name__ == '__main__': | |
if len(sys.argv) != 3: | |
print "Usage: %s img1 img2" % sys.argv[0] | |
else: | |
img1 = sys.argv[1] | |
img2 = sys.argv[2] | |
hash1 = avhash(img1) | |
hash2 = avhash(img2) | |
dist = hamming(hash1, hash2) | |
print "hash(%s) = %d\nhash(%s) = %d\nhamming distance = %d\nsimilarity = %d%%" % (img1, hash1, img2, hash2, dist, (64 - dist) * 100 / 64) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment