Last active
April 21, 2020 20:17
-
-
Save iGio90/b109b02914fb460eeb6e7633256922c7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# The MIT License (MIT) | |
# Copyright (c) 2017 Duncan Macleod | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | |
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE | |
# OR OTHER DEALINGS IN THE SOFTWARE. | |
""" | |
Animate a gravitational-wave signal, and with detectior noise, and | |
with filtered detector noise | |
This is a modified version that allows to create animation for any GW detections | |
It also fixes a couple of imports due to deprecated api used in the original Duncan script | |
Huge kudos to Duncan for all of the hard work | |
""" | |
from __future__ import division | |
import h5py | |
import numpy | |
from astropy.utils.data import download_file | |
from matplotlib import animation | |
from matplotlib import pyplot | |
from gwpy.timeseries import TimeSeries | |
from gwpy.plot import Plot | |
from gwpy.plot.rc import rcParams | |
from gwpy.signal import filter_design | |
from pycbc.catalog import Merger | |
from pycbc.waveform import get_td_waveform | |
from pycbc.detector import Detector | |
from statistics import mean | |
pyplot.style.use('dark_background') | |
rcParams.update({ | |
'figure.dpi': 600, | |
'figure.subplot.left': 0., | |
'figure.subplot.right': 1., | |
'figure.subplot.bottom': 0., | |
'figure.subplot.top': 1., | |
'text.usetex': False, | |
'font.family': 'sans-serif', | |
'font.sans-serif': ['Helvetica Neue', 'Helvetica'], | |
}) | |
# -- animation helpers -------------------------------------------------------- | |
def create_figure(xlim=None, ylim=None): | |
plot = Plot(figsize=[12, 4]) | |
ax = plot.gca() | |
ax.set_axis_off() | |
ax.arrow(0.02, 0.05, 0.02, 0, color='white', | |
head_width=0.02, head_length=0.01, transform=ax.transAxes) | |
ax.text(0.06, 0.05, 'Time', | |
transform=ax.transAxes, color='white', va='center') | |
return plot, ax | |
def animate(target, fig, animate_func, init_func, fps=30., duration=10.): | |
nf = fps * duration | |
delay = int(1 / fps * 1000) | |
anim = animation.FuncAnimation(fig, animate_func, init_func=init_func, | |
frames=int(nf), interval=delay, blit=True) | |
anim.save(target, fps=fps, extra_args=['-vcodec', 'libxvid']) | |
print('{} written'.format(target)) | |
return anim | |
def legend(ax, artists, labels): | |
leg = ax.legend(artists, labels, loc='upper left', frameon=False, | |
fontsize=16) | |
for text in leg.get_texts(): # change font colour | |
text.set_color('white') | |
return leg | |
# -- get data and simulate waveform ------------------------------------------- | |
event = 'GW170818' | |
# create waveform | |
m = Merger(event) | |
hp, hx = get_td_waveform(approximant='IMRPhenomD', delta_t=1 / 4096., | |
f_lower=30, **m.__dict__) | |
posteriors = download_file('https://dcc.ligo.org/public/0157/P1800370/005/%s_GWTC-1.hdf5' % event, cache=True) | |
# project waveform onto LHO at the right time (and sky location) | |
f = h5py.File(posteriors, mode='r') | |
ra = mean(f['IMRPhenomPv2_posterior']['right_ascension']) | |
dec = mean(f['IMRPhenomPv2_posterior']['declination']) | |
gps = m.time | |
available_detectors = {} | |
for x in ['H1', 'L1', 'V1', 'G1', 'K1', 'I1']: | |
try: | |
m.strain(x) | |
available_detectors[x] = Detector(x) | |
except: | |
pass | |
print('Generated waveform') | |
Fp, Fx = available_detectors['H1'].antenna_pattern(ra, dec, 0, gps) | |
sig = TimeSeries.from_pycbc(Fp * hp + Fx * hx).pad((0, 512)) | |
print('Downloading data') | |
time_series = {} | |
for x in available_detectors.keys(): | |
time_series[x] = TimeSeries.fetch_open_data(x, gps - 16, gps + 16, cache=True) | |
# shift data to account for time-delay and orientation | |
for x in available_detectors.keys(): | |
if x == 'H1': | |
continue | |
time_delta = available_detectors['H1'].time_delay_from_detector(available_detectors[x], ra, dec, gps) | |
time_series[x].t0 += time_delta * time_series[x].t0.unit | |
time_series[x] *= -1 * time_series[x].unit | |
# shift detector data to merge at t=0 | |
t0 = gps * time_series['H1'].t0.unit | |
for x in available_detectors.keys(): | |
time_series[x].t0 -= t0 | |
# rescale to sensible amplitude (makes plotting easier) | |
for x in available_detectors.keys(): | |
time_series[x] *= 1e21 | |
sig *= 1e21 | |
# -- animate waveform --------------------------------------------------------- | |
print('Animating waveform...') | |
# crop signal to interval we want to animate | |
sigc = sig.crop(-.4, .2) | |
# set animation parameters | |
fps = 30. | |
duration = 10. | |
times = numpy.arange(sigc.size) | |
# create figure and animation methods | |
plot, ax = create_figure() | |
line, = ax.plot([], [], color='white') | |
ax.set_xlim(0, times.size) | |
ax.set_ylim(-2, 2) | |
npf = sig.size / (fps * duration) | |
def init(): | |
line.set_data([], []) | |
return line, | |
def update(n): | |
n = int(n * npf) | |
line.set_data(times[:n], sigc[:n]) | |
return line, | |
# write animation | |
animate('%s-signal.mp4' % event, plot, update, init, fps=fps, duration=duration) | |
plot.close() | |
# -- animate filtered data ---------------------------------------------------- | |
filter1 = filter_design.highpass(10, time_series['H1'].sample_rate) | |
bp = filter_design.bandpass(50, 250, time_series['H1'].sample_rate) | |
notches = [filter_design.notch(f, time_series['H1'].sample_rate) for f in (60, 120, 180)] | |
filter2 = filter_design.concatenate_zpks(bp, *notches) | |
for zpk, ylim, tag in [ | |
(filter1, (-300, 300), 'highpass'), | |
(filter2, (-2, 2), 'filtered'), | |
]: | |
print('Animating {} data...'.format(tag)) | |
filtered_lines = {} | |
for x in time_series.keys(): | |
filtered_lines[x] = time_series[x].filter(zpk, filtfilt=True).crop(-.4, .2) | |
sigf = sig.filter(zpk, filtfilt=True).crop(-.4, .2)[:filtered_lines['H1'].size] | |
times = numpy.arange(sigf.size) | |
# create figure and animation methods | |
plot, ax = create_figure() | |
lines = {} | |
for x in time_series.keys(): | |
if x == 'H1': | |
color = 'gwpy:ligo-hanford' | |
elif x == 'L1': | |
color = 'gwpy:ligo-livingston' | |
elif x == 'V1': | |
color = 'gwpy:virgo' | |
elif x == 'G1': | |
color = 'gwpy:geo600' | |
elif x == 'K1': | |
color = 'gwpy:kagra' | |
elif x == 'I1': | |
color = 'gwpy:ligo-india' | |
else: | |
raise RuntimeError('wtf?') | |
lines[x] = ax.plot([], [], color=color, linewidth=1)[0] | |
sigline, = ax.plot([], [], color='white') | |
ax.set_xlim(0, times.size) | |
ax.set_ylim(*ylim) | |
# add a legend | |
legend_list = [] | |
for x in lines.keys(): | |
if x == 'H1': | |
legend_list.append('LIGO-Hanford') | |
elif x == 'L1': | |
legend_list.append('LIGO-Livingston') | |
elif x == 'V1': | |
legend_list.append('VIRGO') | |
elif x == 'G1': | |
legend_list.append('GEO600') | |
elif x == 'K1': | |
legend_list.append('KAGRA') | |
elif x == 'I1': | |
legend_list.append('LIGO-India') | |
legend(ax, [sigline] + list(lines.values()), | |
['%s signal' % event] + legend_list) | |
def init(): | |
sigline.set_data([], []) | |
ret = (sigline, ) | |
for x in lines.keys(): | |
lines[x].set_data([], []) | |
ret += (lines[x], ) | |
return ret | |
def update(n): | |
n = int(n * npf) | |
sigline.set_data(times[:n], sigf.value[:n]) | |
ret = (sigline, ) | |
for x in lines.keys(): | |
lines[x].set_data(times[:n], filtered_lines[x].value[:n]) | |
ret += (lines[x], ) | |
return ret | |
# write animation | |
animate(event + ('-{}.mp4'.format(tag)), plot, update, init, | |
fps=fps, duration=duration) | |
plot.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment