Created
July 10, 2018 08:15
-
-
Save iacolippo/9a06449fb4b819083dc61dc020dfed63 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from time import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class ConvNetV0(nn.Module): | |
def __init__(self): | |
super(ConvNetV0, self).__init__() | |
self.conv1 = nn.Conv2d(3, 30, 4, padding=2) | |
self.conv2 = nn.Conv2d(30, 50, 16, padding=7, bias=True) | |
self.conv3 = nn.Conv2d(50, 20, 2, stride=2) | |
self.conv4 = nn.Conv2d(20, 2, 2, stride=2) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = F.relu(x) | |
x = self.conv3(x) | |
x = F.relu(x) | |
y = self.conv4(x) | |
return y | |
class ConvNetV1(nn.Module): | |
def __init__(self): | |
super(ConvNetV1, self).__init__() | |
self.conv0 = nn.Conv2d(3, 50, 4, padding=1, stride=2) | |
self.conv_r1 = nn.Conv2d(50, 40, 15, padding=7, bias=True) | |
self.conv_r2 = nn.Conv2d(40, 25, 3, padding=1) | |
self.conv_r3 = nn.Conv2d(25, 25, 2, stride=2) | |
# self.conv_r3 = nn.MaxPool2d(2, stride=2) | |
self.conv_b1 = nn.Conv2d(50, 15, 4, padding=1, stride=2) | |
self.conv1 = nn.Conv2d(40, 2, 1) | |
def forward(self, x): | |
x = self.conv0(x) | |
x = F.relu(x) | |
x1 = self.conv_r1(x) | |
x1 = F.relu(x1) | |
x1 = self.conv_r2(x1) | |
x1 = F.relu(x1) | |
x1 = self.conv_r3(x1) | |
x2 = self.conv_b1(x) | |
y = torch.cat([x1, x2], dim=1) | |
y = self.conv1(y) | |
return y | |
torch.backends.cudnn.benchmark = True | |
Data = torch.randn(64, 3, 256, 256) | |
Labels = torch.Tensor(64, 8192) | |
Net = ConvNetV0() | |
Labels = Labels.to("cuda:0") | |
Data = Data.to("cuda:0") | |
Net = Net.to("cuda:0") | |
for i in range(8): | |
start = time() | |
out = Net(Data[i:i+8]).view(8, -1) | |
labels = Labels[i:i+8] | |
s = time() | |
loss = F.mse_loss(out, labels) | |
loss_f = time() - s | |
s = time() | |
loss.backward() | |
loss_b = time() - s | |
print('V0 Total: {:.4f} Loss forward: {:.4f} Loss backward: {:.4f}'.format(time()-start, loss_f, loss_b)) | |
del Data, Labels, Net | |
torch.cuda.empty_cache() | |
Data = torch.randn(64, 3, 256, 256) | |
Labels = torch.Tensor(64, 8192) | |
Net = ConvNetV1() | |
Labels = Labels.to("cuda:0") | |
Data = Data.to("cuda:0") | |
Net = Net.to("cuda:0") | |
for i in range(8): | |
start = time() | |
out = Net(Data[i:i+8]).view(8, -1) | |
labels = Labels[i:i+8] | |
s = time() | |
loss = F.mse_loss(out, labels) | |
loss_f = time() - s | |
s = time() | |
loss.backward() | |
loss_b = time() - s | |
print('V1 Total: {:.4f} Loss forward: {:.4f} Loss backward: {:.4f}'.format(time()-start, loss_f, loss_b)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment