Last active
September 4, 2017 15:21
-
-
Save iacolippo/df46eebd6d7ea20402e87229e7258a7a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchvision.datasets import MNIST | |
import torchvision.transforms as transforms | |
import torch | |
import torch.legacy.nn as lnn | |
import torch.legacy.optim as loptim | |
train_dataset = MNIST(root='./data', | |
train=True, | |
transform=transforms.ToTensor(), | |
download=True) | |
test_dataset = MNIST(root='./data', | |
train=False, | |
transform=transforms.ToTensor()) | |
batch_size = 100 | |
n_batches = 60000/100 | |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |
model = lnn.Sequential() | |
model.add(lnn.Linear(784, 200)) | |
model.add(lnn.ReLU()) | |
model.add(lnn.Linear(200, 100)) | |
model.add(lnn.ReLU()) | |
model.add(lnn.Linear(100, 10)) | |
model.add(lnn.LogSoftMax()) | |
criterion = lnn.ClassNLLCriterion() | |
for i in range(2000): | |
for images, labels in train_loader: | |
images = images.view(images.size(0), 28*28) | |
model.zeroGradParameters() | |
output = model.forward(images) | |
loss = criterion.forward(output, labels) | |
error = criterion.backward(output, labels) | |
grads = model.backward(images, error) | |
model.updateParameters(1) | |
if i%200 == 0: | |
print("Error:" + str(loss)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment