Last active
February 3, 2023 09:51
-
-
Save iago-suarez/9022c59d6b47d5583992dd0b2f5baad7 to your computer and use it in GitHub Desktop.
beblid-demo-code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <opencv2/opencv.hpp> | |
#include "BEBLID.h" | |
int main() { | |
// Read the input images in grayscale format (CV_8UC1) | |
cv::Mat img1 = cv::imread("../imgs/img1.jpg", cv::IMREAD_GRAYSCALE); | |
cv::Mat img2 = cv::imread("../imgs/img3.jpg", cv::IMREAD_GRAYSCALE); | |
// Create the feature detector, for example ORB | |
auto detector = cv::ORB::create(); | |
// Detect features in both images | |
std::vector<cv::KeyPoint> points1, points2; | |
detector->detect(img1, points1); | |
detector->detect(img2, points2); | |
std::cout << "Detected " << points1.size() << " kps in image1" << std::endl; | |
std::cout << "Detected " << points2.size() << " kps in image2" << std::endl; | |
// Use 32 bytes per descriptor and configure the scale factor for ORB detector | |
auto descriptor = BEBLID::create(256, 0.75); | |
// Describe the detected features i both images | |
cv::Mat descriptors1, descriptors2; | |
descriptor->compute(img1, points1, descriptors1); | |
descriptor->compute(img2, points2, descriptors2); | |
std::cout << "Points described" << std::endl; | |
// Match the generated descriptors for img1 and img2 using brute force matching | |
cv::BFMatcher matcher(cv::NORM_HAMMING, true); | |
std::vector<cv::DMatch> matches; | |
matcher.match(descriptors1, descriptors2, matches); | |
std::cout << "Number of matches: " << matches.size() << std::endl; | |
// If there is not enough matches exit | |
if (matches.size() < 4) exit(-1); | |
// Take only the matched points that will be used to calculate the | |
// transformation between both images | |
std::vector<cv::Point2d> matched_pts1, matched_pts2; | |
for (cv::DMatch match : matches) { | |
matched_pts1.push_back(points1[match.queryIdx].pt); | |
matched_pts2.push_back(points2[match.trainIdx].pt); | |
} | |
// Find the homography that transforms a point in the first image to a point in the second image. | |
cv::Mat inliers; | |
cv::Mat H = cv::findHomography(matched_pts1, matched_pts2, cv::RANSAC, 3, inliers); | |
// Print the number of inliers, that is, the number of points correctly | |
// mapped by the transformation that we have estimated | |
std::cout << "Number of inliers " << cv::sum(inliers)[0] | |
<< " ( " << (100.0f * cv::sum(inliers)[0] / matches.size()) << "% )" << std::endl; | |
// Convert the image to BRG format from grayscale | |
cv::cvtColor(img1, img1, cv::COLOR_GRAY2BGR); | |
cv::cvtColor(img2, img2, cv::COLOR_GRAY2BGR); | |
// Draw all the matched keypoints in red color | |
cv::Mat all_matches_img; | |
cv::drawMatches(img1, points1, img2, points2, matches, | |
all_matches_img, CV_RGB(255, 0, 0), CV_RGB(255, 0, 0)); | |
// Show and save the result | |
cv::imshow("All matches", all_matches_img); | |
cv::waitKey(); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment