Skip to content

Instantly share code, notes, and snippets.

@ialexpovad
Created February 17, 2023 07:04
Show Gist options
  • Save ialexpovad/01caa4437aa3b0399d16220053dcad73 to your computer and use it in GitHub Desktop.
Save ialexpovad/01caa4437aa3b0399d16220053dcad73 to your computer and use it in GitHub Desktop.
Ridge Classifier Python Example
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
#
# Load IRIS dataset
#
iris = datasets.load_iris()
#
# Create dataframe from IRIS dataset
#
df = pd.DataFrame(iris.data, columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])
df["class"] = iris.target
#
# Create training and test dataset
# As IRIS is multi-class dataset, only two classes (Setosa, Versicolour) have been
# taken into consideration for training purpose for testing
# binary classification
#
X_train, X_test, y_train, y_test = train_test_split(df.iloc[:,0:4],
df.iloc[:, -1],
test_size=0.3,
random_state=1,
stratify=df.iloc[:, -1])
#
# Create standardized training dataset
#
sc = StandardScaler()
X_train_norm = sc.fit_transform(X_train)
X_test_norm = sc.transform(X_test)
#
# Create RidgeClassifier instance
#
rdgclassifier = RidgeClassifier()
rdgclassifier.fit(X_train_norm, y_train)
#
# Score the classifier
#
rdgclassifier.score(X_test_norm, y_test)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment