The need for an inverse matrix. Consider a typical algebraic equation:
We want to solve for
So, have a motive to find
Definition 1
A square matrix
A square matrix
where
Given a system of equations, write the coefficient matrix
Multiply both sides by the inverse of
The steps
Let current diagonal element the focus diagonal element (focusDiagonal). The firs step
- use the element that is in the same column as focusDiagonal and make it a multiplier;
- replace the row with the result of [current row] – multiplier • [row that has focusDiagonal], and do this operation to the
$I$ matrix also. - this will leave a zero in the column shared by focusDiagonal in the
$A$ .
This is done for all cilumns from left to right in both
Our starting matricies are:
-
Using the steps and methods that we just described, scale row 1 of both matricies by 1/5
$$A_M= \begin{bmatrix} 1 & 0.6 & 0.2 \ 3 & 9 & 4 \ 1 & 3 & 5 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.2 & 0 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$
-
Subtract 3 • row 1 of
$A_M$ from row 2 of$A_M$ , and subtract 3 • row 1 of$I_M$ from row 2 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0.6 & 0.2 \ 0 & 7.2 & 3.4 \ 1 & 3 & 5 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.2 & 0 & 0 \ -0.6 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$
-
Subtract 1 • row 1 of
$A_M$ from row 3 of$A_M$ , and subtract 1 • row 1 of$I_M$ from row 3 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0.6 & 0.2 \ 0 & 7.2 & 3.4 \ 0 & 2.4 & 4.8 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.2 & 0 & 0 \ -0.6 & 1 & 0 \ -0.2 & 0 & 1 \end{bmatrix}.$$
-
Scale row 2 of both matricies by 1/7.2
$$A_M= \begin{bmatrix} 1 & 0.6 & 0.2 \ 0 & 1 & 0.472 \ 0 & 2.4 & 4.8 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.2 & 0 & 0 \ -0.083 & 0.139 & 0 \ -0.2 & 0 & 1 \end{bmatrix}.$$
-
Subtract 0.6 • row 2 of
$A_M$ from row 1 of$A_M$ , and subtract 0.6 • row 2 of$I_M$ from row 1 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0 & -0.083 \ 0 & 1 & 0.472 \ 0 & 2.4 & 4.8 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.25 & -0.083 & 0 \ -0.083 & 0.139 & 0 \ -0.2 & 0 & 1 \end{bmatrix}.$$
-
Subtract 2.4 • row 2 of
$A_M$ from row 3 of$A_M$ , and subtract 2.4 • row 2 of$I_M$ from row 3 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0 & -0.083 \ 0 & 1 & 0.472 \ 0 & 0 & 3.667 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.25 & -0.083 & 0 \ -0.083 & 0.139 & 0 \ 0 & -0.333 & 1 \end{bmatrix}.$$
-
Scale row 3 of both matricies by 1/3.667
$$A_M= \begin{bmatrix} 1 & 0 & -0.083 \ 0 & 1 & 0.472 \ 0 & 0 & 1 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.25 & -0.083 & 0 \ -0.083 & 0.139 & 0 \ 0 & -0.091 & 0.273 \end{bmatrix}.$$
-
Subtract -0.083 • row 3 of
$A_M$ from row 1 of$A_M$ , and subtract -0.083 • row 3 of$I_M$ from row 1 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0.472 \ 0 & 0 & 1 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.25 & -0.091 & 0.023 \ -0.083 & 0.139 & 0 \ 0 & -0.091 & 0.273 \end{bmatrix}.$$
-
Subtract 0.472 • row 3 of
$A_M$ from row 2 of$A_M$ , and subtract 0.472 • row 3 of$I_M$ from row 2 of$I_M$ $$A_M= \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}, ~~ I_M= \begin{bmatrix} 0.25 & -0.091 & 0.023 \ -0.083 & 0.182 & -0.129 \ 0 & -0.091 & 0.273 \end{bmatrix}.$$
It all looks good, but let’s perform a check of
Footnotes
-
Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers. ↩