Skip to content

Instantly share code, notes, and snippets.

@ialhashim
Last active November 24, 2022 04:36
Show Gist options
  • Save ialhashim/41490203a6ac42ba3d27 to your computer and use it in GitHub Desktop.
Save ialhashim/41490203a6ac42ba3d27 to your computer and use it in GitHub Desktop.
Header-only C++ implementation to generate Voronoi diagrams (nice data structure)
// Source: https://github.com/samkusin/gamelabs/tree/master/voronoi
// with a bug fix (ennetws)
/* Usage:
using namespace cinekine;
...
voronoi::Sites sites;
for(int i = 0; i < 5; i++) sites.push_back(voronoi::Vertex(rand()*xBound/RAND_MAX,rand()*yBound/RAND_MAX));
...
voronoi::Graph graph = voronoi::build(std::move(sites), xBound, yBound);
...
for (auto& cell: cells) for (auto& halfedge : cell.halfEdges) auto& edge = edges[halfedge.edge];
*/
/*
* The MIT License (MIT)
*
* Copyright (c) 2013 Samir Sinha
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* This is a C++ implementation of Raymond Hill's Javascript implementation of
* Steven Fortune's algorithm to generate Voronoi diagrams. Note it is roughly
* a line-by-line translation of the original Javascript to C++11 (with
* obvious optimizations and modifications tailored to C++)
*
* The original license including links to the original source is supplied
* below. Where appropriate, I've kept the original source comments explaining
* the algorithm, and highlighted sections I've made changes to (ssinha)
*
* Copyright (C) 2010-2013 Raymond Hill: https://github.com/gorhill/Javascript-Voronoi
* MIT License: See https://github.com/gorhill/Javascript-Voronoi/LICENSE.md
*/
#ifndef CK_VORONOI_HPP
#define CK_VORONOI_HPP
#include <vector>
#include <cmath>
#include <cstdint>
namespace cinekine
{
/*
Copyright (C) 2010-2013 Raymond Hill: https://github.com/gorhill/Javascript-Voronoi
MIT License: See https://github.com/gorhill/Javascript-Voronoi/LICENSE.md
*/
/*
Author: Raymond Hill ([email protected])
Contributor: Jesse Morgan ([email protected])
File: rhill-voronoi-core.js
Version: 0.98
Date: January 21, 2013
Description: This is my personal Javascript implementation of
Steven Fortune's algorithm to compute Voronoi diagrams.
License: See https://github.com/gorhill/Javascript-Voronoi/LICENSE.md
Credits: See https://github.com/gorhill/Javascript-Voronoi/CREDITS.md
History: See https://github.com/gorhill/Javascript-Voronoi/CHANGELOG.md
*/
// ssinha - Taken mostly from the Javascript impl - converted to a template
// for future reuse.
// ---------------------------------------------------------------------------
// Red-Black tree code (based on C version of "rbtree" by Franck Bui-Huu
// https://github.com/fbuihuu/libtree/blob/master/rb.c
template<class T>
class RBNodeBase
{
public:
RBNodeBase() :
_parent(nullptr),
_prev(nullptr),
_next(nullptr),
_left(nullptr),
_right(nullptr),
_red(false) {}
void setParent(T* parent) { _parent = parent; }
const T* parent() const { return _parent; }
T* parent() { return _parent; }
void setPrevious(T* prev) { _prev = prev; }
const T* previous() const { return _prev; }
T* previous() { return _prev; }
void setNext(T* next) { _next = next; }
const T* next() const { return _next; }
T* next() { return _next; }
void setLeft(T* left) { _left = left; }
const T* left() const { return _left; }
T* left() { return _left; }
void setRight(T* right) { _right = right; }
const T* right() const { return _right; }
T* right() { return _right; }
void setRed() { _red = true; }
bool red() { return _red; }
void setBlack() { _red = false; }
bool black() { return !_red; }
private:
T* _parent;
T* _prev;
T* _next;
T* _left;
T* _right;
bool _red;
};
/**
* RBNode must implement the following:
*
* RBNode* previous();
* void setPrevious(RBNode* node);
*
* RBNode* next();
* void setNext(RBNode* node);
*
* RBNode* left();
* void setLeft(RBNode* node);
*
* RBNode* right();
* void setRight(RBNode* node);
*
* RBNode* parent();
* void setParent(RBNode* node);
*
* void setRed();
* void setBlack();
* bool red();
* bool black();
*/
template<class RBNode>
class RBTree
{
public:
RBTree() : _root(nullptr) {}
RBNode* root() { return _root; }
void insert(RBNode* node, RBNode* successor);
void remove(RBNode* node);
private:
RBNode* _root;
void rotateLeft(RBNode* node);
void rotateRight(RBNode* node);
RBNode* getFirst(RBNode* node);
RBNode* getLast(RBNode* node);
};
template<class RBNode>
void RBTree<RBNode>::insert(RBNode* node, RBNode* successor)
{
RBNode* parent = nullptr;
if (node)
{
successor->setPrevious(node);
successor->setNext(node->next());
if (node->next())
{
node->next()->setPrevious(successor);
}
node->setNext(successor);
if (node->right())
{
node = node->right();
while (node->left())
node = node->left();
node->setLeft(successor);
}
else
{
node->setRight(successor);
}
parent = node;
}
// rhill 2011-06-07: if node is null, successor must be inserted
// to the left-most part of the tree
else if (_root)
{
node = getFirst(_root);
successor->setPrevious(nullptr);
successor->setNext(node);
node->setPrevious(successor);
node->setLeft(successor);
parent = node;
}
else
{
successor->setPrevious(nullptr);
successor->setNext(nullptr);
_root = successor;
parent = nullptr;
}
successor->setLeft(nullptr);
successor->setRight(nullptr);
successor->setParent(parent);
successor->setRed();
// Fixup the modified tree by recoloring nodes and performing
// rotations (2 at most) hence the red-black tree properties are
// preserved.
RBNode* grandpa;
RBNode* uncle;
node = successor;
while (parent && parent->red())
{
grandpa = parent->parent();
if (parent == grandpa->left())
{
uncle = grandpa->right();
if (uncle && uncle->red())
{
parent->setBlack();
uncle->setBlack();
grandpa->setRed();
node = grandpa;
}
else
{
if (node == parent->right())
{
rotateLeft(parent);
node = parent;
parent = node->parent();
}
parent->setBlack();
grandpa->setRed();
rotateRight(grandpa);
}
}
else
{
uncle = grandpa->left();
if (uncle && uncle->red())
{
parent->setBlack();
uncle->setBlack();
grandpa->setRed();
node = grandpa;
}
else
{
if (node == parent->left())
{
rotateRight(parent);
node = parent;
parent = node->parent();
}
parent->setBlack();
grandpa->setRed();
rotateLeft(grandpa);
}
}
parent = node->parent();
}
_root->setBlack();
}
template<class RBNode>
void RBTree<RBNode>::remove(RBNode* node)
{
if (node->next())
{
node->next()->setPrevious(node->previous());
}
if (node->previous())
{
node->previous()->setNext(node->next());
}
node->setNext(nullptr);
node->setPrevious(nullptr);
RBNode* parent = node->parent();
RBNode* left = node->left();
RBNode* right = node->right();
RBNode* next = (!left) ? right : (!right) ? left : getFirst(right);
if (parent)
{
if (parent->left() == node)
parent->setLeft(next);
else
parent->setRight(next);
}
else
{
_root = next;
}
// rhill - enforce red-black rules
bool isRed;
if (left && right)
{
isRed = next->red();
if (node->red())
next->setRed();
else
next->setBlack();
next->setLeft(left);
left->setParent(next);
if (next != right)
{
parent = next->parent();
next->setParent(node->parent());
node = next->right();
parent->setLeft(node);
next->setRight(right);
right->setParent(next);
}
else
{
next->setParent(parent);
parent = next;
node = next->right();
}
}
else
{
isRed = node->red();
node = next;
}
// 'node' is now the sole successor's child and 'parent' its
// new parent (since the successor can have been moved)
if (node)
{
node->setParent(parent);
}
if (isRed)
{
return;
}
if (node && node->red())
{
node->setBlack();
return;
}
RBNode* sibling;
do
{
if (node == _root)
break;
if (node == parent->left())
{
sibling = parent->right();
if (sibling->red())
{
sibling->setBlack();
parent->setRed();
rotateLeft(parent);
sibling = parent->right();
}
if ((sibling->left() && sibling->left()->red()) ||
(sibling->right() && sibling->right()->red()))
{
if (!sibling->right() || sibling->right()->black())
{
sibling->left()->setBlack();
sibling->setRed();
rotateRight(sibling);
sibling = parent->right();
}
if (parent->red())
sibling->setRed();
else
sibling->setBlack();
parent->setBlack();
sibling->right()->setBlack();
rotateLeft(parent);
node = _root;
break;
}
}
else
{
sibling = parent->left();
if (sibling->red())
{
sibling->setBlack();
parent->setRed();
rotateRight(parent);
sibling = parent->left();
}
if ((sibling->left() && sibling->left()->red()) ||
(sibling->right() && sibling->right()->red()))
{
if (!sibling->left() || sibling->left()->black())
{
sibling->right()->setBlack();
sibling->setRed();
rotateLeft(sibling);
sibling = parent->left();
}
if (parent->red())
sibling->setRed();
else
sibling->setBlack();
parent->setBlack();
sibling->left()->setBlack();
rotateRight(parent);
node = _root;
break;
}
}
sibling->setRed();
node = parent;
parent = parent->parent();
}
while (node->black());
if (node)
node->setBlack();
}
template<class RBNode>
void RBTree<RBNode>::rotateLeft(RBNode* node)
{
RBNode* p = node;
RBNode* q = node->right();
RBNode* parent = p->parent();
if (parent)
{
if (parent->left() == p)
parent->setLeft(q);
else
parent->setRight(q);
}
else
{
_root = q;
}
q->setParent(parent);
p->setParent(q);
p->setRight(q->left());
if (p->right())
{
p->right()->setParent(p);
}
q->setLeft(p);
}
template<class RBNode>
void RBTree<RBNode>::rotateRight(RBNode* node)
{
RBNode* p = node;
RBNode* q = node->left();
RBNode* parent = p->parent();
if (parent)
{
if (parent->left() == p)
parent->setLeft(q);
else
parent->setRight(q);
}
else
{
_root = q;
}
q->setParent(parent);
p->setParent(q);
p->setLeft(q->right());
if (p->left())
{
p->left()->setParent(p);
}
q->setRight(p);
}
template<class RBNode>
RBNode* RBTree<RBNode>::getFirst(RBNode* node)
{
while (node->left())
node = node->left();
return node;
}
template<class RBNode>
RBNode* RBTree<RBNode>::getLast(RBNode* node)
{
while (node->right())
node = node->right();
return node;
}
} // namespace cinekine
namespace cinekine
{
namespace voronoi
{
/**
* @class Vertex
* @brief A 2D vertex used during voronoi computation
*/
class Vertex
{
public:
Vertex() = default;
Vertex(float _x, float _y): x(_x), y(_y) {}
static const Vertex undefined;
operator bool() const {
return !std::isnan(x) && !std::isnan(y);
}
float x, y;
};
inline bool operator==(const Vertex& v1, const Vertex& v2)
{
return v1.x == v2.x && v1.y == v2.y;
}
inline bool operator!=(const Vertex& v1, const Vertex& v2)
{
return v1.x != v2.x || v1.y != v2.y;
}
/**
* @struct Site
* @brief Extends Site - Site metadata built on top of the site's position
* (a 2D vertex)
*/
struct Site: public Vertex
{
int cell;
Site(const Vertex& v) : Vertex(v.x, v.y), cell(-1) {}
Site(): cell(-1) {}
};
/**
* @struct Edge
* @brief Defines an edge of a Voronoi Cell and its placement
* relative to other Sites
* Note that p0 and p1 are invalid unless explicitly set
*/
struct Edge
{
int leftSite;
int rightSite;
Vertex p0;
Vertex p1;
Edge() :
leftSite(-1), rightSite(-1),
p0(Vertex::undefined),
p1(Vertex::undefined) {}
Edge(int lSite, int rSite) :
leftSite(lSite), rightSite(rSite),
p0(Vertex::undefined),
p1(Vertex::undefined) {}
void setStartpoint(int lSite, int rSite,
const Vertex& vertex);
void setEndpoint(int lSite, int rSite,
const Vertex& vertex);
};
inline void Edge::setStartpoint(int lSite, int rSite,
const Vertex& vertex)
{
if (!p0 && !p1)
{
p0 = vertex;
leftSite = lSite;
rightSite = rSite;
}
else if (leftSite == rSite)
{
p1 = vertex;
}
else
{
p0 = vertex;
}
}
inline void Edge::setEndpoint(int lSite, int rSite,
const Vertex& vertex)
{
setStartpoint(rSite, lSite, vertex);
}
/**
* @struct HalfEdge
* @brief An edge segment as it relates to a single site (versus a
* full edge as it relates to two sites.)
*/
struct HalfEdge
{
int site;
int edge;
float angle;
};
/** A half edges container */
typedef std::vector<HalfEdge> HalfEdges;
/**
* @struct Cell
* @brief A cell containing a site surrounded by edges.
*
* It's possible to optimize this, specifying a start and end point to
* a common HalfEdge vector (or pool?)
*
*/
struct Cell
{
int site;
HalfEdges halfEdges;
bool closeMe;
Cell(int s) :
site(s),
halfEdges(),
closeMe(false) {}
};
/** A Site container */
typedef std::vector<Site> Sites;
/** An edges container */
typedef std::vector<Edge> Edges;
/** A cells container */
typedef std::vector<Cell> Cells;
class Fortune;
/**
* @class Graph
* @brief A Voronoi cell graph from a collection of sites
*/
class Graph
{
public:
Graph();
Graph(float xBound, float yBound, Sites&& sites);
Graph(Graph&& other);
Graph& operator=(Graph&& other);
const Sites& sites() const {
return _sites;
}
const Cells& cells() const {
return _cells;
}
const Edges& edges() const {
return _edges;
}
private:
friend class Fortune;
friend Graph build(Sites&& sites, float xBound, float yBound);
int createEdge(int left, int right,
const Vertex& va=Vertex::undefined,
const Vertex& vb=Vertex::undefined);
int createBorderEdge(int site,
const Vertex& va, const Vertex& vb);
HalfEdge createHalfEdge(int edge, int lSite, int rSite);
void clipEdges();
bool clipEdge(int32_t edge);
bool connectEdge(int edgeIdx);
void closeCells();
bool prepareHalfEdgesForCell(int32_t cell);
Vertex getHalfEdgeStartpoint(const HalfEdge& halfEdge);
Vertex getHalfEdgeEndpoint(const HalfEdge& halfEdge);
private:
Sites _sites;
Edges _edges;
Cells _cells;
float _xBound;
float _yBound;
};
///////////////////////////////////////////////////////////////////////
struct BeachArc;
struct CircleEvent : RBNodeBase<CircleEvent>
{
BeachArc* arc;
int site;
float x;
float y;
float yCenter;
CircleEvent() :
arc(nullptr),
site(-1),
x(0.0f), y(0.0f), yCenter(0.0f) {}
};
struct BeachArc : RBNodeBase<BeachArc>
{
int site;
int edge;
int refcnt;
CircleEvent* circleEvent;
BeachArc(int s) :
site(s),
edge(-1),
refcnt(0),
circleEvent(nullptr) {}
};
class Fortune
{
public:
Fortune(Graph& graph);
~Fortune();
void addBeachSection(int site);
void removeBeachSection(BeachArc* arc);
CircleEvent* circleEvent() {
return _topCircleEvent;
}
private:
Graph& _graph;
const Sites& _sites;
Edges& _edges;
RBTree<BeachArc> _beachline;
RBTree<CircleEvent> _circleEvents;
CircleEvent* _topCircleEvent;
int _arcCnt, _circleCnt;
BeachArc* allocArc(int site) {
BeachArc* arc = new BeachArc(site);
++arc->refcnt;
++_arcCnt;
return arc;
}
void releaseArc(BeachArc* arc) {
if (arc->refcnt > 0)
{
--arc->refcnt;
if (!arc->refcnt)
{
--_arcCnt;
delete arc;
}
}
else
{
printf("Releasing after 0 refcnt\n");
}
}
CircleEvent* allocCircleEvent(BeachArc* arc) {
auto event = new CircleEvent();
event->arc = arc;
++event->arc->refcnt;
++_circleCnt;
return event;
}
void freeCircleEvent(CircleEvent* event) {
releaseArc(event->arc);
--_circleCnt;
delete event;
}
void attachCircleEvent(BeachArc* arc);
void detachCircleEvent(BeachArc* arc);
void detachBeachSection(BeachArc* arc);
float leftBreakPoint(BeachArc* arc, float directrix);
float rightBreakPoint(BeachArc* arc, float directrix);
};
// Builds a graph given a collection of sites and a bounding box
//
Graph build(Sites&& sites, float xBound, float yBound);
} // namespace voronoi
} // namespace cinekine
namespace cinekine
{
namespace voronoi
{
const float kEpsilon = 1e-4;
const Vertex Vertex::undefined =
Vertex(std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN());
Fortune::Fortune(Graph& graph) :
_graph(graph),
_sites(graph._sites),
_edges(graph._edges),
_beachline(),
_circleEvents(),
_topCircleEvent(nullptr),
_arcCnt(0),
_circleCnt(0)
{
}
Fortune::~Fortune()
{
printf("Arcs Remaining: %d\n", _arcCnt);
printf("Circles Remaining: %d\n", _circleCnt);
printf("Edges alloced: %lu\n", _edges.size());
}
float Fortune::leftBreakPoint(BeachArc* arc, float directrix)
{
const Site& site = _sites[arc->site];
float rfocx = site.x, rfocy = site.y;
float pby2 = rfocy - directrix;
// parabola in degenerate case where focus is on directrix
if (pby2 == 0.0f)
return rfocx;
BeachArc *leftArc = arc->previous();
if (!leftArc)
return -std::numeric_limits<float>::infinity();
const Site& leftSite = _sites[leftArc->site];
float lfocx = leftSite.x, lfocy = leftSite.y;
float plby2 = lfocy - directrix;
if (plby2 == 0.0f)
return lfocx;
float hl = lfocx-rfocx;
float aby2 = 1/pby2 - 1/plby2;
float b = hl/plby2;
if (aby2 != 0.0f)
{
float dist = std::sqrt(b*b -
2*aby2 *
(hl*hl/(-2*plby2) -
lfocy + plby2/2 + rfocy-pby2/2));
return (-b + dist)/aby2 + rfocx;
}
// both parabolas have same distance to directrix, thus break point is
// midway
return (rfocx+lfocx)/2;
}
float Fortune::rightBreakPoint(BeachArc* arc, float directrix)
{
BeachArc* rightArc = arc->next();
if (rightArc)
{
return leftBreakPoint(rightArc, directrix);
}
const Site& site = _sites[arc->site];
return site.y == directrix ? site.x :
std::numeric_limits<float>::infinity();
}
void Fortune::attachCircleEvent(BeachArc* arc)
{
BeachArc* leftArc = arc->previous();
BeachArc* rightArc = arc->next();
if (!leftArc || !rightArc)
return;
// If site of left beachsection is same as site of
// right beachsection, there can't be convergence
if (leftArc->site == rightArc->site)
return;
const Site& leftSite = _sites[leftArc->site];
const Site& centerSite = _sites[arc->site];
const Site& rightSite = _sites[rightArc->site];
// Find the circumscribed circle for the three sites associated
// with the beachsection triplet.
// rhill 2011-05-26: It is more efficient to calculate in-place
// rather than getting the resulting circumscribed circle from an
// object returned by calling Voronoi.circumcircle()
// http://mathforum.org/library/drmath/view/55002.html
// Except that I bring the origin at cSite to simplify calculations.
// The bottom-most part of the circumcircle is our Fortune 'circle
// event', and its center is a vertex potentially part of the final
// Voronoi diagram.
float bx = centerSite.x, by = centerSite.y;
float ax = leftSite.x - bx, ay = leftSite.y - by;
float cx = rightSite.x - bx, cy = rightSite.y - by;
// If points l->c->r are clockwise, then center beach section does not
// collapse, hence it can't end up as a vertex (we reuse 'd' here, which
// sign is reverse of the orientation, hence we reverse the test.
// http://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
// rhill 2011-05-21: Nasty finite precision error which caused
// circumcircle() to return infinites: 1e-12 seems to fix the problem.
float d = 2*(ax*cy - ay*cx);
if (d >= -2e-9)
return;
float ha = ax*ax + ay*ay;
float hc = cx*cx + cy*cy;
float x = (cy*ha - ay*hc)/d;
float y = (ax*hc - cx*ha)/d;
float ycenter = y + by;
CircleEvent* circleEvent = allocCircleEvent(arc);
circleEvent->site = arc->site;
circleEvent->x = x+bx;
circleEvent->y = ycenter + std::sqrt(x*x+y*y);
circleEvent->yCenter = ycenter;
arc->circleEvent = circleEvent;
// find insertion point in RB-tree: circle events are ordered from
// smallest to largest
CircleEvent* predecessor = nullptr;
CircleEvent* node = _circleEvents.root();
while (node)
{
if (circleEvent->y < node->y ||
(circleEvent->y == node->y && circleEvent->x <= node->x))
{
if (node->left())
{
node = node->left();
}
else
{
predecessor = node->previous();
break;
}
}
else
{
if (node->right())
{
node = node->right();
}
else
{
predecessor = node;
break;
}
}
}
_circleEvents.insert(predecessor, circleEvent);
if (!predecessor)
{
_topCircleEvent = circleEvent;
}
}
void Fortune::detachCircleEvent(BeachArc* arc)
{
CircleEvent* circleEvent = arc->circleEvent;
if (circleEvent)
{
if (!circleEvent->previous())
{
_topCircleEvent = circleEvent->next();
}
_circleEvents.remove(circleEvent);
if (_topCircleEvent != circleEvent)
{
freeCircleEvent(circleEvent);
}
arc->circleEvent = nullptr;
}
}
void Fortune::addBeachSection(int siteIndex)
{
const Site& site = _sites[siteIndex];
float x = site.x, directrix = site.y;
// find the left and right beach sections which will surround
// the newly created beach section.
BeachArc* leftArc = nullptr;
BeachArc* rightArc = nullptr;
BeachArc* node = _beachline.root();
while (node)
{
float dxl = leftBreakPoint(node, directrix) - x;
// x lessThanWithEpsilon xl => falls somewhere before the left edge
// of the beachsection
if (dxl > kEpsilon) // float episilon
{
node = node->left();
}
else
{
float dxr = x - rightBreakPoint(node, directrix);
// x greaterThanWithEpsilon xr => falls somewhere after the
// right edge of the beachsection
if (dxr > kEpsilon)
{
if (!node->right())
{
leftArc = node;
break;
}
node = node->right();
}
else
{
// x equalWithEpsilon xl => falls exactly on the left edge
// of the beachsection
if (dxl > -kEpsilon)
{
leftArc = node->previous();
rightArc = node;
}
// x equalWithEpsilon xr => falls exactly on the right edge
// of the beachsection
else if (dxr > -kEpsilon)
{
leftArc = node;
rightArc = node->next();
}
// falls exactly somewhere in the middle of the
// beachsection
else
{
leftArc = rightArc = node;
}
break;
}
}
}
// create a new beach section object for the site and add it to RB-tree
BeachArc* newArc = allocArc(siteIndex);
_beachline.insert(leftArc, newArc);
// [null,null]
// least likely case: new beach section is the first beach section on the
// beachline.
// This case means:
// no new transition appears
// no collapsing beach section
// new beachsection become root of the RB-tree
if (!leftArc && !rightArc)
return;
// [lArc,rArc] where lArc == rArc
// most likely case: new beach section split an existing beach
// section.
// This case means:
// one new transition appears
// the left and right beach section might be collapsing as a result
// two new nodes added to the RB-tree
if (leftArc == rightArc)
{
// invalidate circle event of split beach section
detachCircleEvent(leftArc);
// split the beach section into two separate beach sections
rightArc = allocArc(leftArc->site);
_beachline.insert(newArc, rightArc);
// since we have a new transition between two beach sections,
// a new edge is born
newArc->edge = rightArc->edge = _graph.createEdge(leftArc->site,
newArc->site);
attachCircleEvent(leftArc);
attachCircleEvent(rightArc);
return;
}
// [lArc,null]
// even less likely case: new beach section is the *last* beach section
// on the beachline -- this can happen *only* if *all* the previous
// beach sections currently on the beachline share the same y value as
// the new beach section.
// This case means:
// one new transition appears
// no collapsing beach section as a result
// new beach section become right-most node of the RB-tree
if (leftArc && !rightArc) {
newArc->edge = _graph.createEdge(leftArc->site, newArc->site);
return;
}
// [lArc,rArc] where lArc != rArc
// somewhat less likely case: new beach section falls *exactly* in
// between two existing beach sections
// This case means:
// one transition disappears
// two new transitions appear
// the left and right beach section might be collapsing as a result
// only one new node added to the RB-tree
if (leftArc != rightArc)
{
detachCircleEvent(leftArc);
detachCircleEvent(rightArc);
// an existing transition disappears, meaning a vertex is defined
// at the disappearance point.
// since the disappearance is caused by the new beachsection, the
// vertex is at the center of the circumscribed circle of the left,
// new and right beachsections.
// http://mathforum.org/library/drmath/view/55002.html
// Except that I bring the origin at A to simplify
// calculation
const Site& leftSite = _sites[leftArc->site];
float ax = leftSite.x, ay = leftSite.y;
float bx = site.x - ax, by = site.y - ay;
const Site& rightSite = _sites[rightArc->site];
float cx = rightSite.x - ax, cy = rightSite.y - ay;
float d = 2*(bx*cy-by*cx);
float hb = bx*bx + by*by;
float hc = cx*cx + cy*cy;
Vertex vertex(ax+(cy*hb-by*hc)/d, ay+(bx*hc-cx*hb)/d);
// one transition disappear
_edges[rightArc->edge].setStartpoint(leftArc->site,
rightArc->site, vertex);
newArc->edge = _graph.createEdge(leftArc->site, siteIndex,
Vertex::undefined, vertex);
rightArc->edge = _graph.createEdge(siteIndex, rightArc->site,
Vertex::undefined, vertex);
// check whether the left and right beach sections are collapsing
// and if so create circle events, to handle the point of collapse.
attachCircleEvent(leftArc);
attachCircleEvent(rightArc);
return;
}
}
void Fortune::removeBeachSection(BeachArc* arc)
{
CircleEvent* circle = arc->circleEvent;
float x = circle->x, y = circle->yCenter;
Vertex vertex(x, y);
BeachArc* previous = arc->previous();
BeachArc* next = arc->next();
// ssinha - keep track of what arcs we've staged for deletion
// the algorithm needs to reference these arcs after detaching
std::vector<BeachArc*> detachedSections;
// remove collapsed arc from beachline
detachedSections.push_back(arc);
++arc->refcnt;
detachBeachSection(arc);
// there could be more than one empty arc at the deletion point, this
// happens when more than two edges are linked by the same vertex,
// so we will collect all those edges by looking up both sides of
// the deletion point.
// by the way, there is *always* a predecessor/successor to any
// collapsed beach section, it's just impossible to have a collapsing
// first/last beach sections on the beachline, since they obviously are
// unconstrained on their left/right side.
//
BeachArc* leftArc = previous;
while (leftArc->circleEvent &&
std::abs(x-leftArc->circleEvent->x) < kEpsilon &&
std::abs(y-leftArc->circleEvent->yCenter) < kEpsilon)
{
previous = leftArc->previous();
detachedSections.insert(detachedSections.begin(), leftArc);
++leftArc->refcnt;
detachBeachSection(leftArc);
leftArc = previous;
}
// even though it is not disappearing, I will also add the beach section
// immediately to the left of the left-most collapsed beach section, for
// convenience, since we need to refer to it later as this beach section
// is the 'left' site of an edge for which a start point is set.
detachedSections.insert(detachedSections.begin(), leftArc);
detachCircleEvent(leftArc);
BeachArc* rightArc = next;
while (rightArc->circleEvent &&
std::abs(x-rightArc->circleEvent->x) < kEpsilon &&
std::abs(y-rightArc->circleEvent->yCenter) < kEpsilon)
{
next = rightArc->next();
detachedSections.push_back(rightArc);
++rightArc->refcnt;
detachBeachSection(rightArc);
rightArc = next;
}
// we also have to add the beach section immediately to the right of
// the right-most collapsed beach section, since there is also a
// disappearing transition representing an edge's start point on its
// left.
detachedSections.push_back(rightArc);
detachCircleEvent(rightArc);
// walk through all the disappearing transitions between beach
// sections and set the start point of their (implied) edge.
size_t numArcs = detachedSections.size();
for (size_t iArc = 1; iArc < numArcs; ++iArc)
{
rightArc = detachedSections[iArc];
leftArc = detachedSections[iArc-1];
_edges[rightArc->edge].setStartpoint(leftArc->site,
rightArc->site,
vertex);
}
// create a new edge as we have now a new transition between
// two beach sections which were previously not adjacent.
// since this edge appears as a new vertex is defined, the vertex
// actually define an end point of the edge (relative to the site
// on the left)
leftArc = detachedSections[0];
rightArc = detachedSections[numArcs-1];
detachedSections.erase(detachedSections.begin());
detachedSections.pop_back();
// clear detached sections
for (auto section: detachedSections)
{
releaseArc(section);
}
detachedSections.clear();
// do we need to dererence the "old" edge?
rightArc->edge = _graph.createEdge(leftArc->site, rightArc->site,
Vertex::undefined, vertex);
// create circle events if any for beach sections left in the beachline
// adjacent to collapsed sections
attachCircleEvent(leftArc);
attachCircleEvent(rightArc);
}
void Fortune::detachBeachSection(BeachArc* arc)
{
detachCircleEvent(arc);
_beachline.remove(arc);
releaseArc(arc);
}
///////////////////////////////////////////////////////////////////////////
Graph::Graph() :
_sites(),
_edges(),
_cells(),
_xBound(0.0f), _yBound(0)
{
}
Graph::Graph(float xBound, float yBound, Sites&& sites) :
_sites(std::move(sites)),
_edges(),
_cells(),
_xBound(xBound), _yBound(yBound)
{
}
Graph::Graph(Graph&& other) :
_sites(std::move(other._sites)),
_edges(std::move(other._edges)),
_cells(std::move(other._cells)),
_xBound(other._xBound), _yBound(other._yBound)
{
other._xBound = 0.0f;
other._yBound = 0.0f;
}
Graph& Graph::operator=(Graph&& other)
{
_sites = std::move(other._sites);
_edges = std::move(other._edges);
_cells = std::move(other._cells);
_xBound = other._xBound;
_yBound = other._yBound;
other._xBound = 0.0f;
other._yBound = 0.0f;
return *this;
}
int Graph::createEdge(int left, int right,
const Vertex& va,
const Vertex& vb)
{
_edges.emplace_back(left, right);
int edge = (int)_edges.size()-1;
if (va)
{
_edges[edge].setStartpoint(left, right, va);
}
if (vb)
{
_edges[edge].setEndpoint(left, right, vb);
}
const Site& l = _sites[left];
const Site& r = _sites[right];
_cells[l.cell].halfEdges.push_back(createHalfEdge(edge,left,right));
_cells[r.cell].halfEdges.push_back(createHalfEdge(edge,right,left));
return edge;
}
// creates an edge that lies on the border of the owning graph
//
int Graph::createBorderEdge(int site, const Vertex& va, const Vertex& vb)
{
_edges.emplace_back(site, -1);
int edgeIdx = (int)(_edges.size()-1);
Edge& edge = _edges[edgeIdx];
edge.p0 = va;
edge.p1 = vb;
return edgeIdx;
}
HalfEdge Graph::createHalfEdge(int edge, int lSite, int rSite)
{
HalfEdge halfedge;
halfedge.edge = edge;
halfedge.site = lSite;
const Site& lSiteRef = _sites[lSite];
if (rSite >= 0)
{
const Site& rSiteRef = _sites[rSite];
halfedge.angle = std::atan2(rSiteRef.y-lSiteRef.y,
rSiteRef.x-lSiteRef.x);
}
else
{
const Edge& edgeRef = _edges[edge];
if (edgeRef.leftSite == lSite)
{
halfedge.angle = std::atan2(edgeRef.p1.x-edgeRef.p0.x,
edgeRef.p0.y-edgeRef.p1.y);
}
else
{
halfedge.angle = std::atan2(edgeRef.p0.x-edgeRef.p1.x,
edgeRef.p1.y-edgeRef.p0.y);
}
}
return halfedge;
}
bool Graph::connectEdge(int edgeIdx)
{
const float xBound = _xBound;
const float yBound = _yBound;
Edge& edge = _edges[edgeIdx];
// skip if end point already connected
if (edge.p1)
return true;
const float xl = 0.0f,
xr = xBound,
yt = 0.0f,
yb = yBound;
const Site& lSite = _sites[edge.leftSite];
const Site& rSite = _sites[edge.rightSite];
const float lx = lSite.x,
ly = lSite.y,
rx = rSite.x,
ry = rSite.y,
fx = (lx+rx)/2,
fy = (ly+ry)/2;
// if we reach here, this means cells which use this edge will need
// to be closed, whether because the edge was removed, or because it
// was connected to the bounding box.
_cells[lSite.cell].closeMe = true;
_cells[rSite.cell].closeMe = true;
Vertex p1;
Vertex p0 = edge.p0;
// remember, direction of line (relative to left site):
// upward: left.x < right.x
// downward: left.x > right.x
// horizontal: left.x == right.x
// upward: left.x < right.x
// rightward: left.y < right.y
// leftward: left.y > right.y
// vertical: left.y == right.y
// depending on the direction, find the best side of the
// bounding box to use to determine a reasonable start point
// rhill 2013-12-02:
// While at it, since we have the values which define the line,
// clip the end of va if it is outside the bbox.
// https://github.com/gorhill/Javascript-Voronoi/issues/15
// TODO: Do all the clipping here rather than rely on Liang-Barsky
// which does not do well sometimes due to loss of arithmetic
// precision. The code here doesn't degrade if one of the vertex is
// at a huge distance.
// special case: vertical line
if (ry == ly)
{
// doesn't intersect with viewport
if (fx < xl || fx >= xr)
return false;
// downward
if (lx > rx)
{
if (!p0 || p0.x < yt)
p0 = Vertex(fx, yt);
else if (p0.y >= yb)
return false;
p1 = Vertex(fx, yb);
}
// upward
else
{
if (!p0 || p0.y > yb)
p0 = Vertex(fx, yb);
else if (p0.y < yt)
return false;
p1 = Vertex(fx, yt);
}
}
// get the line equation of the bisector if line is not vertical
else
{
float fm = (lx-rx)/(ry-ly);
float fb = fy-fm*fx;
// closer to vertical than horizontal, connect start point to the
// top or bottom side of the bounding box
if (fm < -1.0f || fm > 1.0f)
{
// downward
if (lx > rx)
{
if (!p0 || p0.y < yt)
p0 = Vertex((yt-fb)/fm, yt);
else if (p0.y >= yb)
return false;
p1 = Vertex((yb-fb)/fm, yb);
}
// upward
else
{
if (!p0 || p0.y > yb)
p0 = Vertex((yb-fb)/fm, yb);
else if (p0.y < yt)
return false;
p1 = Vertex((yt-fb)/fm, yt);
}
}
// closer to horizontal than vertical, connect start point to the
// left or right side of the bounding box
else
{
// rightward
if (ly < ry)
{
if (!p0 || p0.x < xl)
p0 = Vertex(xl, fm*xl+fb);
else if (p0.x >= xr)
return false;
p1 = Vertex(xr, fm*xr+fb);
}
// leftward
else
{
if (!p0 || p0.x > xr)
p0 = Vertex(xr, fm*xr+fb);
else if (p0.x < xl)
return false;
p1 = Vertex(xl, fm*xl+fb);
}
}
}
edge.p0 = p0;
edge.p1 = p1;
return true;
}
// line-clipping code taken from:
// Liang-Barsky function by Daniel White
// http://www.skytopia.com/project/articles/compsci/clipping.html
// Thanks!
// A bit modified to minimize code paths
bool Graph::clipEdge(int edgeIdx)
{
const float xBound = _xBound;
const float yBound = _yBound;
Edge& edge = _edges[edgeIdx];
const float ax = edge.p0.x,
ay = edge.p0.y,
bx = edge.p1.x,
by = edge.p1.y;
float t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay;
// left
float q = ax;
if (dx == 0.0f && q < 0)
return false;
float r = -q/dx;
if (dx < 0.0f)
{
if (r < t0) return false;
if (r < t1) t1 = r;
}
else if (dx > 0.0f)
{
if (r > t1) return false;
if (r > t0) t0 = r;
}
// right
q = xBound - ax;
if (dx == 0.0f && q < 0)
return false;
r = q/dx;
if (dx < 0.0f)
{
if (r > t1) return false;
if (r > t0) t0 = r;
}
else if (dx > 0.0f)
{
if (r < t0) return false;
if (r < t1) t1 = r;
}
// top
q = ay;
if (dy == 0.0f && q < 0)
return false;
r = -q/dy;
if (dy < 0.0f)
{
if (r < t0) return false;
if (r < t1) t1 = r;
}
else if (dy > 0.0f)
{
if (r > t1) return false;
if (r > t0) t0 = r;
}
// bottom
q = yBound - ay;
if (dy == 0.0f && q < 0)
return false;
r = q/dy;
if (dy < 0.0f)
{
if (r > t1) return false;
if (r > t0) t0 = r;
}
else if (dy > 0.0f)
{
if (r < t0) return false;
if (r < t1) t1 = r;
}
// if we reach this point, Voronoi edge is within bbox
// if t0 > 0, p0 needs to change
// rhill 2011-06-03: we need to create a new vertex rather
// than modifying the existing one, since the existing
// one is likely shared with at least another edge
if (t0 > 0.0f)
{
edge.p0 = Vertex(ax+t0*dx, ay+t0*dy);
if (edge.p0.x < kEpsilon)
edge.p0.x = 0.f;
if (edge.p0.y < kEpsilon)
edge.p0.y = 0.f;
}
// if t1 < 1, p1 needs to change
// rhill 2011-06-03: we need to create a new vertex rather
// than modifying the existing one, since the existing
// one is likely shared with at least another edge
if (t1 < 1.0f)
{
edge.p1 = Vertex(ax+t1*dx, ay+t1*dy);
if (edge.p1.x < kEpsilon)
edge.p1.x = 0.f;
if (edge.p1.y < kEpsilon)
edge.p1.y = 0.f;
}
// p0 and/or p1 were clipped, thus we will need to close
// cells which use this edge.
if (t0 > 0.0f || t1 < 1.0f)
{
_cells[_sites[edge.leftSite].cell].closeMe = true;
_cells[_sites[edge.rightSite].cell].closeMe = true;
}
return true;
}
/**
* Connect all dangling edges to bounding box
* @param graph Graph container
* @param xBound X bounds
* @param yBound Y bounds
*/
void Graph::clipEdges()
{
int numEdges = (int)_edges.size();
for (int i = 0; i < numEdges; ++i)
{
Edge& edge = _edges[i];
// edge is cleared (not moved -- ssinha) if:
// it is wholly outside the bounding box
// it is looking more like a point than a line
// ssinha - we rely on keeping the edges container
// constant (though the edges can change, the indexing
// can't - perhaps use a hash/map instead of a vector
// to mitigate our reliance on having a continguous and
// unchanging edge vector)
if (!connectEdge(i) ||
!clipEdge(i) ||
(std::abs(edge.p0.x-edge.p1.x) < kEpsilon &&
std::abs(edge.p0.y-edge.p1.y) < kEpsilon))
{
// ssinha - the javascript impl removes the edge from
// the edges container, but of course the edge may
// still be referenced by a halfedge/cell, keeping it
// alive (and erased when finalizing the cell) In this
// version, we keep the edge since its part of a
// pool/vector (see above as to why)
edge.p0 = Vertex::undefined;
edge.p1 = Vertex::undefined;
}
}
}
Vertex Graph::getHalfEdgeStartpoint(const HalfEdge& halfEdge)
{
const Edge& edge = _edges[halfEdge.edge];
return edge.leftSite == halfEdge.site ? edge.p0 : edge.p1;
}
Vertex Graph::getHalfEdgeEndpoint(const HalfEdge& halfEdge)
{
const Edge& edge = _edges[halfEdge.edge];
return edge.leftSite == halfEdge.site ? edge.p1 : edge.p0;
}
// Initialize half edges following build
//
bool Graph::prepareHalfEdgesForCell(int32_t cell)
{
if (cell >= _cells.size())
return false;
HalfEdges& halfEdges = _cells[cell].halfEdges;
// get rid of unused halfedges
for (auto it = halfEdges.begin(); it < halfEdges.end();)
{
Edge& edge = _edges[(*it).edge];
if (!edge.p1 || !edge.p0)
{
it = halfEdges.erase(it);
}
else
{
++it;
}
}
// descending order
std::sort(halfEdges.begin(), halfEdges.end(),
[](const HalfEdge& a, const HalfEdge& b)
{
return a.angle > b.angle;
});
return halfEdges.size();
}
// Close the cells.
// The cells are bound by the supplied bounding box.
// Each cell refers to its associated site, and a list
// of halfedges ordered counterclockwise.
void Graph::closeCells()
{
const float xl = 0.0f,
xr = _xBound,
yt = 0.0f,
yb = _yBound;
size_t iCell = _cells.size();
while (iCell--)
{
Cell& cell = _cells[iCell];
// prune, order halfedges counterclockwise, then add missing ones
// required to close cells
if (!prepareHalfEdgesForCell((int)iCell))
continue;
if (!cell.closeMe)
continue;
// find first 'unclosed' point.
// an 'unclosed' point will be the end point of a halfedge which
// does not match the start point of the following halfedge
HalfEdges& halfEdges = cell.halfEdges;
size_t nHalfEdges = halfEdges.size();
// special case: only one site, in which case, the viewport is the
// cell
// ... (ssinha todo - is this needed?)
// all other cases
size_t iLeft = 0;
//printf("Cell: (%d)\n", cell.site);
while (iLeft < nHalfEdges)
{
Vertex va = getHalfEdgeEndpoint(halfEdges[iLeft]);
size_t iNextLeft = (iLeft+1) % nHalfEdges;
Vertex vz = getHalfEdgeStartpoint(halfEdges[iNextLeft]);
// if end point is not equal to start point, we need to add the
// missing halfedge(s) up to vz
if (std::abs(va.x - vz.x)>=kEpsilon || std::abs(va.y - vz.y)>=kEpsilon)
{
// rhill 2013-12-02:
// "Holes" in the halfedges are not necessarily always
// adjacent.
// https://github.com/gorhill/Javascript-Voronoi/issues/16
bool lastBorderSegment = false;
Vertex vb;
int edgeIdx = -1;
// walk downward along left side
if (std::abs(va.x-xl)<kEpsilon && (yb-va.y)>kEpsilon)
{
//printf("new border edge: Left, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.x-xl) < kEpsilon;
vb = Vertex(xl, lastBorderSegment ? vz.y : yb);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk rightward along bottom side
if (!lastBorderSegment && std::abs(va.y-yb)<kEpsilon && (xr-va.x)>kEpsilon)
{
//printf("new border edge: Bottom, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.y-yb) < kEpsilon;
vb = Vertex(lastBorderSegment ? vz.x : xr, yb);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk upward along right side
if (!lastBorderSegment && std::abs(va.x-xr)<kEpsilon && (va.y-yt)>kEpsilon)
{
//printf("new border edge: Right, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.x-xr) < kEpsilon;
vb = Vertex(xr, lastBorderSegment ? vz.y : yt);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk leftward along top side
if (!lastBorderSegment && std::abs(va.y-yt)<kEpsilon && (va.x-xl)>kEpsilon)
{
//printf("new border edge: Top, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.y-yt) < kEpsilon;
vb = Vertex(lastBorderSegment ? vz.x : xl, yt);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk downward along left side
if (!lastBorderSegment)
{
//printf("new border edge: Left 2, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.x-xl) < kEpsilon;
vb = Vertex(xl, lastBorderSegment ? vz.y : yb);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk rightward along bottom side
if (!lastBorderSegment)
{
//printf("new border edge: Bottom 2, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.y-yb) < kEpsilon;
vb = Vertex(lastBorderSegment ? vz.x : xr, yb);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
if (!lastBorderSegment)
va = vb;
}
// walk upward along right side
if (!lastBorderSegment)
{
//printf("new border edge: Right 2, vz=(%.6f,%.6f)\n", vz.x, vz.y);
lastBorderSegment = std::abs(vz.x-xr) < kEpsilon;
vb = Vertex(xr, lastBorderSegment ? vz.y : yt);
edgeIdx = createBorderEdge(cell.site, va, vb);
++iLeft;
halfEdges.insert(halfEdges.begin()+iLeft,
createHalfEdge(edgeIdx,cell.site, -1));
++nHalfEdges;
}
}
++iLeft;
}
cell.closeMe = false;
}
}
///////////////////////////////////////////////////////////////////////////
// a method for constructing a voronoi graph
//
Graph build(Sites&& sites, float xBound, float yBound)
{
Graph graph(xBound, yBound, std::move(sites));
Sites& graphSites = graph._sites;
// sort the sites, lowest Y - highest priority (the first in the
// vector.)
// we'll iterate through every site, begin to end but otherwise
// keep all the sites within vector - our edges and cells will
// point to sites within this vector
std::vector<int> siteEvents;
siteEvents.reserve(graphSites.size());
const Site* siteData = graphSites.data();
const Site* lastSiteData = nullptr;
for (size_t i = 0; i < graphSites.size(); ++i)
{
// remove duplicates
if (!lastSiteData || *lastSiteData != *siteData)
{
siteEvents.push_back((int)i);
}
lastSiteData = siteData;
++siteData;
}
std::sort(siteEvents.begin(), siteEvents.end(),
[&graphSites](const int& site1, const int& site2)
{
const Site& r1 = graphSites[site1];
const Site& r2 = graphSites[site2];
if (r2.y > r1.y)
return true;
if (r2.y < r1.y)
return false;
if (r2.x > r1.x)
return true;
return false;
});
// generate Cells container
Cells& cells = graph._cells;
cells.reserve(siteEvents.size());
Fortune fortune(graph);
// iterate through all events, generating the beachline
auto siteIt = siteEvents.begin();
while(1)
{
auto circle = fortune.circleEvent();
int siteIndex = (siteIt != siteEvents.end()) ? *siteIt : -1;
Site* site = siteIndex >= 0 ? &graphSites[siteIndex] : nullptr;
// new site? create its cell and parabola (beachline segment)
if (site && (!circle ||
site->y < circle->y ||
(site->y == circle->y && site->x < circle->x)))
{
//printf("Site: (%.2f,%.2f)\n", site->x, site->y);
cells.emplace_back(siteIndex);
site->cell = (int)cells.size()-1;
fortune.addBeachSection(siteIndex);
if (site) // site will be null if at end()
{
++siteIt;
}
}
else if (circle)
{
fortune.removeBeachSection(circle->arc);
}
else
{
break;
}
}
// wrapping-up:
// connect dangling edges to bounding box
// cut edges as per bounding box
// discard edges completely outside bounding box
// discard edges which are point-like
graph.clipEdges();
// add missing edges in order to close opened cells
graph.closeCells();
// TODO: there are BeachArc leaks - we should keep track
// of the active arcs and free them here.
return graph;
}
} // namespace voronoi
} // namespace cinekine
#endif
@rodrigo1406
Copy link

Trying to compile a C++ program that uses it, giving the following error:

error: ‘cells’ was not declared in this scope
  for (auto& cell: cells)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment