Using local LLMs anywhere (in text editor) - example below with Obsidian
inspired by and adopted from LLM-automator.
Code example with
mixtral

Using local LLMs anywhere (in text editor) - example below with Obsidian
inspired by and adopted from LLM-automator.
Code example with
mixtral
import re | |
import subprocess | |
def _parse_names(data: str) -> list[str]: | |
""" | |
Parses names from a multi-line string where each line contains a name and other details. | |
Parameters: | |
data (str): A multi-line string containing names and other details. |
# basedk on: https://github.com/joaomdmoura/crewAI#getting-started | |
from crewai import Agent, Task, Crew | |
from langchain_community.llms import Ollama | |
from langchain_community.tools import DuckDuckGoSearchRun | |
# -- model | |
# ollama_llm = Ollama(model="arabic_deepseek-llm") | |
# ollama_llm = Ollama(model="arabic_notux") | |
ollama_llm = Ollama(model="arabic_mixtral") |
import torch | |
# Check if CUDA is available, else check for MPS, otherwise default to CPU | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") # GPU | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") # MacOS M-series chip | |
else: | |
device = torch.device("cpu") # CPU |