Created
July 31, 2018 16:06
-
-
Save iambrj/dda8f93bcd598521c9550b91b1b7121e to your computer and use it in GitHub Desktop.
red black tree implementation in c++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef _RED_BLACK_ //protection from multiple inclusion | |
#define _RED_BLACK_ | |
struct NODE | |
{ | |
int key; | |
int color; //black = 0 and red = 1 | |
NODE* p; //pointer to parent | |
NODE* r; //pointer to right child | |
NODE* l; //pointer to left child | |
}; | |
NODE NULL_NODE = {-1,0,0,0,0}; //sentinal | |
class RBT //assumed no equal keys | |
{ | |
private: | |
NODE* ROOT; | |
public: | |
RBT() | |
{ | |
ROOT = 0; //initally points to nothing | |
} | |
NODE* search(int k) const //search for node with key k | |
{ | |
if(ROOT == 0) return &NULL_NODE; //no tree | |
NODE* CURRENT = ROOT; | |
for(;;) | |
{ | |
if(k == CURRENT->key) return CURRENT; | |
else if(k < CURRENT->key) | |
{ | |
if(CURRENT->l == 0) return &NULL_NODE; //no node with given key | |
else CURRENT = CURRENT->l; | |
} | |
else if(k > CURRENT->key) | |
{ | |
if(CURRENT->r == 0) return &NULL_NODE; //no node with given key | |
else CURRENT = CURRENT->r; | |
} | |
} | |
} | |
NODE* minimum(NODE& N) const | |
{ | |
if(ROOT == 0) return &NULL_NODE; //no tree | |
NODE* CURRENT = search(N.key); //pointer to sub-tree root | |
while(CURRENT->l != 0) CURRENT = CURRENT->l; //find minimun | |
return CURRENT; | |
} | |
bool insert_node(int k) //true if successful, false otherwise. | |
{ | |
NODE* insert = new NODE; | |
//using new instead of just declaring as NODE insert because memory can be freed | |
//in delete_node and insert->key looks more intuitive (well, to me anyway) than insert.key | |
insert->key = k; | |
insert->color = 1; //red is default | |
insert->p = 0; //if it is the root, parent is null pointer | |
insert->l = 0; /* So that leaves will have */ | |
insert->r = 0; /* null pointers for children */ | |
if(ROOT == 0) //first insert | |
{ | |
ROOT = insert; | |
return true; | |
} | |
for(;;) | |
{ | |
if(k == insert->key) break; | |
else if(k < insert->key) | |
{ | |
if(insert->l != 0) insert = insert->l; | |
else | |
{ | |
insert->l = insert; | |
insert->p = insert; | |
break; | |
} | |
} | |
else if(k > insert->key) | |
{ | |
if(insert->r != 0) insert = insert->r; | |
else | |
{ | |
insert->r = insert; | |
insert->p = insert; | |
break; | |
} | |
} | |
} | |
//fixing up violations | |
while(insert->p != ROOT && insert->p->color == 1) | |
{ | |
if(insert->p == insert->p->p->l) // insert is in the left subtree | |
{ | |
NODE* aunt = insert->p->p->r; // chose aunt insted of uncle because aunt has one | |
if(aunt->color == 1) // character less than uncle. I am not sexist. | |
{ | |
//case 1 | |
insert->color = 0; | |
aunt->color = 0; | |
insert->p->p->color = 1; | |
insert = insert->p->p; | |
continue; | |
} | |
else if(insert = insert->p->p->r) | |
{ | |
//case 2 | |
left_rotate(insert->p->key); //rotations defined below | |
} | |
else | |
{ | |
//case 3 | |
insert->p->color = 0; // recoloring first and rotating next because | |
insert->p->p->color = 1; // rotating changes parent-child relations | |
right_rotate(insert->p->p->key); | |
return true; | |
} | |
} | |
else // insert is in the right subtree | |
{ | |
// same code with l interchanged with r. Copy-pasted (you can prolly tell by the cringy comment in the next line) | |
NODE* aunt = insert->p->p->l; // chose aunt insted of uncle because aunt has one | |
if(aunt->color == 1) // character less than uncle. I am not a sexist. | |
{ | |
//case 1 | |
insert->color = 0; | |
aunt->color = 0; | |
insert->p->p->color = 1; | |
insert = insert->p->p; | |
continue; | |
} | |
else if(insert = insert->p->p->l) | |
{ | |
//case 2 | |
right_rotate(insert->p->key); //rotations defined below | |
} | |
else | |
{ | |
//case 3 | |
insert->p->color = 0; // recoloring first and rotating next because | |
insert->p->p->color = 1; // rotating changes parent-child relations | |
left_rotate(insert->p->p->key); | |
return true; | |
} | |
} | |
} | |
return false; //couldn't insert | |
} | |
void transplant(NODE* u, NODE* v) | |
{ | |
if(u->p == 0) ROOT = v; // u is the root | |
else if(u == u->p->l) u->p->l = v; // u is a left child | |
else u->p->r = v; // u is a right child | |
v->p = u->p; | |
} | |
bool delete_node(int k) //true if successful, false otherwise. | |
{ | |
NODE* del = search(k); //search for the node to be deleted | |
int original_color = del->color; | |
NODE* y = del; | |
NODE* x; // x becomes either y's right child or 0 | |
if(del->l == 0) // no left child | |
{ | |
x = del->r; | |
transplant(del,del->r); | |
} | |
else if(del->r == 0) // no right child | |
{ | |
x = del->l; | |
transplant(del,del->l); | |
} | |
else // both children | |
{ | |
y = minimum(*del->r); // successor | |
original_color = y->color; | |
x = y->r; | |
if(y->p->key == del->key) x->p == y; //del's right child turned out to be its successor | |
else | |
{ | |
transplant(y,y->r); | |
y->r = del->r; | |
y->r->p = y; | |
} | |
y->l = del->l; | |
y->l->p = y; | |
y->color = del->color; | |
} | |
//fixing up violations | |
if(original_color == 0) | |
{ | |
NODE* aunt; | |
while(x != ROOT && x->color == 0) | |
{ | |
if(x->p->l) //x a the left child | |
{ | |
aunt = x->p->r; | |
if(aunt->color == 1) | |
{ | |
// case 1 | |
aunt->color = 0; | |
x->p->color = 1; | |
left_rotate(x->p->key); | |
aunt = x->p->r; | |
} | |
if(aunt->l->color == 0 && aunt->r->color == 0) | |
{ | |
//case 2 | |
aunt->color = 1; | |
x = x->p; | |
} | |
else if(aunt->r->color == 0) | |
{ | |
//case 3 | |
aunt->l->color = 0; | |
aunt->color = 1; | |
right_rotate(aunt->key); | |
aunt = x->p->r; | |
} | |
//case 4 | |
aunt->color = x->p->color; | |
x->p->color = 0; | |
aunt->r->color = 0; | |
left_rotate(x->p->key); | |
x = ROOT; | |
} | |
// interchange l and r | |
else | |
{ | |
aunt = x->p->l; | |
if(aunt->color == 1) | |
{ | |
// case 1 | |
aunt->color = 0; | |
x->p->color = 1; | |
left_rotate(x->p->key); | |
aunt = x->p->l; | |
} | |
if(aunt->r->color == 0 && aunt->l->color == 0) | |
{ | |
//case 2 | |
aunt->color = 1; | |
x = x->p; | |
} | |
else if(aunt->l->color == 0) | |
{ | |
//case 3 | |
aunt->r->color = 0; | |
aunt->color = 1; | |
left_rotate(aunt->key); | |
aunt = x->p->l; | |
} | |
//case 4 | |
aunt->color = x->p->color; | |
x->p->color = 0; | |
aunt->l->color = 0; | |
left_rotate(x->p->key); | |
x = ROOT; | |
} | |
} | |
x->color = 0; | |
} | |
return false; //couldn't delete | |
} | |
void left_rotate(int k) | |
{ | |
NODE* x = search({k}); //node to be rotated | |
NODE* y = x->r; //set y | |
x->r = y->l; //y's left subtree is x's right subtree | |
if(y->l != 0) y->l->p = x; | |
y->p = x->p; //linking parent | |
if(x->p == 0) ROOT = y; | |
else if(x == x->p->l) x->p->l =y; | |
else x->p->r = y; | |
y->l = x; //put x on y's left | |
x->p = y; | |
} | |
// same with x and y interchanged | |
void right_rotate(int k) | |
{ | |
NODE* x = search({k}); //node to be rotated | |
NODE* y = x->l; //set y | |
x->l = y->r; //y's right subtree is x's left subtree | |
if(y->r != 0) y->r->p = x; | |
y->p = x->p; //linking parent | |
if(x->p == 0) ROOT = y; | |
else if(x == x->p->r) x->p->r =y; | |
else x->p->l = y; | |
y->r = x; //put x on y's right | |
x->p = y; | |
} | |
}; | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
#include
#include "rb.cpp"
using namespace std;
int main()
{
RBT r;
r.insert_node(1);
r.insert_node(2);
r.insert_node(3);
r.insert_node(4);
r.insert_node(5);
cout<<r.search(2)<<endl;
cout<<r.search(6)<<endl;
}