Last active
March 19, 2017 09:53
-
-
Save iamharshit/3e035d679e7bab7aa5088e36c2adf48d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
import theano.tensor as T | |
from helper import activations | |
from helper import misc,updates | |
from scipy.stats import gaussian_kde | |
from matplotlib import pyplot as plt | |
from matplotlib.pyplot import * | |
from helper import inits | |
from helper.theano_utils import floatX, sharedX | |
#defining parameters | |
sz=2048 | |
nh=2048 | |
leaky_rectify = activations.leaky_rectify() | |
rectify = activations.Rectify() | |
tanh = activations.Tanh() | |
sigmoid = activations.Sigmoid() | |
bce = T.nnet.binary_crossentropy | |
batch_size = 128 | |
init_fn = misc.Normal(scale=0.02) | |
#returns the probability of X to be choosed if gaussian distribution followed | |
def gaussian_probability(X, u=0., s=1.): | |
return (1./(s*np.sqrt(2*np.pi)))*np.exp(-(((X - u)**2)/(2*s**2))) | |
def scale_and_shift(X, g, b): | |
return X*g + b | |
#defining Generator(G) network as multilayer perceptron | |
def G(X, w1, g1, b1, w2, g2, b2, w3): | |
h1 = leaky_rectify(scale_and_shift(T.dot(X,w1), g1, b1)) | |
h2 = leaky_rectify(scale_and_shift(T.dot(h1,w2), g2, b2)) | |
y = T.dot(h2, w3) | |
return y | |
#defining Discriminator(D) network as multilayer perceptron | |
def D(X, w1, g1, b1, w2, g2, b2, w3): | |
h1 = leaky_rectify(scale_and_shift(T.dot(X,w1), g1, b1)) | |
h2 = tanh(scale_and_shift(T.dot(h1,w2), g2, b2)) | |
y = sigmoid(T.dot(h2,w3)) | |
return y | |
#initialise parameters for G and D | |
g_w1 = init_fn((1, nh)) | |
g_g1 = inits.Normal(1., 0.02)(nh) | |
g_b1 = inits.Normal(0., 0.02)(nh) | |
g_w2 = init_fn((nh, nh)) | |
g_g2 = inits.Normal(1., 0.02)(nh) | |
g_b2 = inits.Normal(0., 0.02)(nh) | |
g_w3 = init_fn((nh, 1)) | |
d_w1 = init_fn((1, nh)) | |
d_g1 = inits.Normal(1., 0.02)(nh) | |
d_b1 = inits.Normal(0., 0.02)(nh) | |
d_w2 = init_fn((nh, nh)) | |
d_g2 = inits.Normal(1., 0.02)(nh) | |
d_b2 = inits.Normal(0., 0.02)(nh) | |
d_w3 = init_fn((nh, 1)) | |
#defining input | |
Z = T.matrix() | |
X = T.matrix() | |
#building generator, "gen" stores the output of generator layer | |
gen = G(Z, g_w1, g_g1, g_b1, g_w2, g_g2, g_b2, g_w3 ) | |
#getting the probability for real ang generated data | |
prob_real = D(X, d_w1, d_g1, d_b1, d_w2, d_g2, d_b2, d_w3) | |
prob_gen = D(gen, d_w1, d_g1, d_b1, d_w2, d_g2, d_b2, d_w3) | |
#cost calculation for G and D | |
g_cost = T.nnet.binary_crossentropy(prob_gen, T.ones(prob_gen.shape)).mean() | |
d_real_cost = T.nnet.binary_crossentropy(prob_real, T.ones(prob_gen.shape)).mean() | |
d_gen_cost = T.nnet.binary_crossentropy(prob_gen, T.zeros(prob_gen.shape)).mean() | |
d_cost = d_real_cost + d_gen_cost | |
#all costs summarized in one list | |
cost = [g_cost, d_cost, d_real_cost, d_gen_cost] | |
#using Adam optimizer | |
learning_rate= 0.001 | |
g_updater = updates.Adam(lr=sharedX(learning_rate) ) | |
d_updater = updates.Adam(lr=sharedX(learning_rate) ) | |
g_update = g_updater([g_w1, g_g1, g_b1, g_w2, g_g2, g_b2, g_w3 ], g_cost) | |
d_update = d_updater([d_w1, d_g1, d_b1, d_w2, d_g2, d_b2, d_w3 ], d_cost) | |
#interconversion between variable and function | |
train_g = theano.function([X, Z], cost, updates=g_update) | |
train_d = theano.function([X, Z], cost, updates=d_update) | |
_gen = theano.function([Z], gen) | |
_score = theano.function([X], prob_real) | |
# visualising G and D | |
def visualise(i): | |
fig = plt.figure() | |
#generatiing distribution | |
x = np.linspace(-5, 5, 500).astype('float32') | |
z = np.linspace(-1, 1, 500).astype('float32') | |
y_true = gaussian_probability(x) | |
kde = gaussian_kde(_gen(z.reshape(-1,1)).flatten()) | |
y_gen = kde(x) | |
preal = _score(x.reshape(-1, 1)).flatten() | |
#plotting distribution | |
plt.clf() | |
plt.plot(x, y_true, '--', lw=2) | |
plt.plot(x, y_gen, lw=2) | |
plt.plot(x, preal, lw=2) | |
plt.xlim([-5.,5.]) | |
plt.ylim([0.,1.]) | |
plt.ylabel('Probability--> ') | |
plt.xlabel('X --> ') | |
plt.legend(['Training Data', 'Generated Data', 'Discriminator']) | |
plt.title('GAN learn Gaussian distibution | Generation: '+str(i)) | |
#fig.canvas.draw() | |
#plt.show() | |
#show() | |
plt.savefig("fig"+str(i)+".png") | |
#Training G and N for 50 generations | |
for i in range(100): | |
x = np.random.normal(1, 1, size=(batch_size, 1)).astype('float32') | |
y = np.random.uniform(-1, 1, size=(batch_size, 1)).astype('float32') | |
if i%5==0: | |
train_g(x, y) | |
print "Generation = ",str(i) | |
visualise(i) | |
else: | |
train_d(x, y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment