Created
June 8, 2024 21:40
-
-
Save iamlemec/3febf59b41b7f32a450fcfcb4be0713c to your computer and use it in GitHub Desktop.
Using KV cache with mixed causal/non-causal attention.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers.models.roberta import RobertaConfig, RobertaModel, RobertaTokenizer | |
# load model and tokenizer | |
tokenizer = RobertaTokenizer.from_pretrained('FacebookAI/roberta-base') | |
model = RobertaModel.from_pretrained('FacebookAI/roberta-base', is_decoder=True).to('cuda') | |
# tokenize inputs | |
text = 'hello world, this is a test' | |
inputs = tokenizer(text, return_tensors='pt').to('cuda') | |
input_ids = inputs['input_ids'] | |
attention_mask = inputs['attention_mask'] | |
_, n = input_ids.shape | |
# construct attention masks | |
attention_noncausal = torch.ones((n, n)).unsqueeze(0).to('cuda') | |
attention_causal = torch.tril(attention_noncausal) | |
# check that default is non-causal | |
outputs_default = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state | |
outputs_causal = model(input_ids=input_ids, attention_mask=attention_causal).last_hidden_state | |
outputs_noncausal = model(input_ids=input_ids, attention_mask=attention_noncausal).last_hidden_state | |
assert(torch.allclose(outputs_default, outputs_causal, atol=1e-5)) | |
# construct mixed attention masks | |
n1 = 4 | |
n2 = n - n1 | |
print(n1, n2) | |
attention_mixed = torch.cat([ | |
torch.cat([torch.ones((n1, n1)), torch.zeros((n1, n2))], 1), | |
torch.cat([torch.ones((n2, n1)), torch.tril(torch.ones((n2, n2)))], 1) | |
], 0).unsqueeze(0).to('cuda') | |
print(attention_mixed) | |
# construct split attention masks | |
attention_mixed_one = attention_mixed[:, :n1, :n1].clone() | |
attention_mixed_two = attention_mixed[:, n1:, :].clone() | |
print(attention_mixed_one) | |
print(attention_mixed_two) | |
# evaluate full mixed attention | |
outputs_mixed = model(input_ids=input_ids, attention_mask=attention_mixed).last_hidden_state | |
# first batch of split case | |
return_mixed_one = model( | |
input_ids=input_ids[:, :n1], attention_mask=attention_mixed_one, use_cache=True | |
) | |
cache_mixed_one = return_mixed_one.past_key_values | |
outputs_mixed_one = return_mixed_one.last_hidden_state | |
# second batch of split case | |
return_mixed_two = model( | |
input_ids=input_ids[:, n1:], attention_mask=attention_mixed_two, past_key_values=cache_mixed_one | |
) | |
outputs_mixed_two = return_mixed_two.last_hidden_state | |
# combine outputs | |
outputs_mixed_combined = torch.cat([outputs_mixed_one, outputs_mixed_two], 1) | |
assert(torch.allclose(outputs_mixed, outputs_mixed_combined, atol=1e-5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment