Created
January 13, 2025 19:18
-
-
Save iamlemec/7d6eca7111052a6c5f3ac31bf3635d05 to your computer and use it in GitHub Desktop.
Trying out some different JAX options for demeaning.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from functools import partial | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from jax import config | |
def _apply_factor(x, f, w, ng): | |
"""Process a single factor.""" | |
wx = x * w[:, None] | |
# Compute group weights and weighted sums | |
group_weights = jnp.bincount(f, weights=w, length=ng) | |
group_sums = jax.vmap( | |
lambda col: jnp.bincount(f, weights=col, length=ng) | |
)(wx.T).T | |
# Compute and subtract means | |
means = group_sums / group_weights[:, None] | |
return x - means[f], None | |
def _demean_step(x_curr, flist, weights, n_groups): | |
"""Single demeaning step for all factors.""" | |
# Process all factors using scan | |
result, _ = jax.lax.scan( | |
lambda x, f: _apply_factor(x, f, weights, n_groups), | |
x_curr, flist.T | |
) | |
return result | |
def _cond_fun(state, tol, maxiter): | |
"""Condition function for while_loop.""" | |
i, _, max_diff = state | |
return jnp.logical_and(i < maxiter, max_diff > tol) | |
def _body_fun(state, flist, weights, n_groups): | |
"""Body function for while_loop.""" | |
i, x_curr, _ = state | |
x_new = _demean_step(x_curr, flist, weights, n_groups) | |
max_diff = jnp.max(jnp.abs(x_new - x_curr)) | |
return i + 1, x_new, max_diff | |
@partial(jax.jit, static_argnames=("n_groups", "maxiter")) | |
def _demean_jax_impl( | |
x: jnp.ndarray, | |
flist: jnp.ndarray, | |
weights: jnp.ndarray, | |
n_groups: int, | |
tol: float, | |
maxiter: int, | |
) -> tuple[jnp.ndarray, bool]: | |
"""JIT-compiled implementation of demeaning.""" | |
# Run the iteration loop using while_loop | |
_, final_x, max_diff = jax.lax.while_loop( | |
lambda state: _cond_fun(state, tol, maxiter), | |
lambda state: _body_fun(state, flist, weights, n_groups), | |
(0, x, 1.0) | |
) | |
return final_x, max_diff | |
def demean_jax( | |
x: np.ndarray, | |
flist: np.ndarray, | |
weights: np.ndarray, | |
tol: float = 1e-08, | |
maxiter: int = 100_000, | |
) -> tuple[np.ndarray, bool]: | |
"""Fast and reliable JAX implementation with static shapes.""" | |
# Enable float64 precision | |
config.update("jax_enable_x64", True) | |
# Compute n_groups before JIT | |
n_groups = int(np.max(flist) + 1) | |
# Convert inputs to JAX arrays | |
x_jax = jnp.asarray(x, dtype=jnp.float64) | |
flist_jax = jnp.asarray(flist, dtype=jnp.int32) | |
weights_jax = jnp.asarray(weights, dtype=jnp.float64) | |
# Call the JIT-compiled implementation | |
result_jax, max_diff = _demean_jax_impl( | |
x_jax, flist_jax, weights_jax, n_groups, tol, maxiter | |
) | |
return np.array(result_jax), max_diff < tol | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment