Created
February 8, 2018 01:32
-
-
Save iamryanyu/7ea5c8c390832bcca50ce84bcc6a0401 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* https://github.com/gre/bezier-easing | |
* BezierEasing - use bezier curve for transition easing function | |
* by Gaëtan Renaudeau 2014 - 2015 – MIT License | |
*/ | |
// These values are established by empiricism with tests (tradeoff: performance VS precision) | |
var NEWTON_ITERATIONS = 4; | |
var NEWTON_MIN_SLOPE = 0.001; | |
var SUBDIVISION_PRECISION = 0.0000001; | |
var SUBDIVISION_MAX_ITERATIONS = 10; | |
var kSplineTableSize = 11; | |
var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); | |
var float32ArraySupported = typeof Float32Array === 'function'; | |
function A (aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; } | |
function B (aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; } | |
function C (aA1) { return 3.0 * aA1; } | |
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. | |
function calcBezier (aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } | |
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2. | |
function getSlope (aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } | |
function binarySubdivide (aX, aA, aB, mX1, mX2) { | |
var currentX, currentT, i = 0; | |
do { | |
currentT = aA + (aB - aA) / 2.0; | |
currentX = calcBezier(currentT, mX1, mX2) - aX; | |
if (currentX > 0.0) { | |
aB = currentT; | |
} else { | |
aA = currentT; | |
} | |
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS); | |
return currentT; | |
} | |
function newtonRaphsonIterate (aX, aGuessT, mX1, mX2) { | |
for (var i = 0; i < NEWTON_ITERATIONS; ++i) { | |
var currentSlope = getSlope(aGuessT, mX1, mX2); | |
if (currentSlope === 0.0) { | |
return aGuessT; | |
} | |
var currentX = calcBezier(aGuessT, mX1, mX2) - aX; | |
aGuessT -= currentX / currentSlope; | |
} | |
return aGuessT; | |
} | |
module.exports = function bezier (mX1, mY1, mX2, mY2) { | |
if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) { | |
throw new Error('bezier x values must be in [0, 1] range'); | |
} | |
// Precompute samples table | |
var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); | |
if (mX1 !== mY1 || mX2 !== mY2) { | |
for (var i = 0; i < kSplineTableSize; ++i) { | |
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); | |
} | |
} | |
function getTForX (aX) { | |
var intervalStart = 0.0; | |
var currentSample = 1; | |
var lastSample = kSplineTableSize - 1; | |
for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) { | |
intervalStart += kSampleStepSize; | |
} | |
--currentSample; | |
// Interpolate to provide an initial guess for t | |
var dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); | |
var guessForT = intervalStart + dist * kSampleStepSize; | |
var initialSlope = getSlope(guessForT, mX1, mX2); | |
if (initialSlope >= NEWTON_MIN_SLOPE) { | |
return newtonRaphsonIterate(aX, guessForT, mX1, mX2); | |
} else if (initialSlope === 0.0) { | |
return guessForT; | |
} else { | |
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2); | |
} | |
} | |
return function BezierEasing (x) { | |
if (mX1 === mY1 && mX2 === mY2) { | |
return x; // linear | |
} | |
// Because JavaScript number are imprecise, we should guarantee the extremes are right. | |
if (x === 0) { | |
return 0; | |
} | |
if (x === 1) { | |
return 1; | |
} | |
return calcBezier(getTForX(x), mY1, mY2); | |
}; | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment