Last active
April 11, 2016 19:01
-
-
Save iaroslav-ai/949ee0200152236937c4d0b29f70f70e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from neon.util.argparser import NeonArgparser | |
from neon.layers import Conv, Pooling, MergeBroadcast, BranchNode, Affine, Tree, Dropout | |
from neon.layers import GeneralizedCost, Multicost | |
from neon.initializers import Constant, Xavier | |
from neon.optimizers import GradientDescentMomentum, MultiOptimizer | |
from neon.transforms import Rectlin, Softmax, CrossEntropyMulti, TopKMisclassification | |
from neon.models import Model | |
from neon.data import ArrayIterator | |
import numpy as np | |
parser = NeonArgparser(__doc__) | |
parser.add_argument('--subset_pct', type=float, default=100, | |
help='subset of training dataset to use (percentage)') | |
parser.add_argument('--test_only', action='store_true', | |
help='skip fitting - evaluate metrics on trained model weights') | |
args = parser.parse_args() | |
test = ArrayIterator(np.random.rand(256,224,224,3)) | |
init1 = Xavier(local=False) | |
initx = Xavier(local=True) | |
bias = Constant(val=0.20) | |
relu = Rectlin() | |
common = dict(activation=relu, init=initx, bias=bias) | |
commonp1 = dict(activation=relu, init=initx, bias=bias, padding=1) | |
commonp2 = dict(activation=relu, init=initx, bias=bias, padding=2) | |
pool3s1p1 = dict(fshape=3, padding=1, strides=1) | |
pool3s2p1 = dict(fshape=3, padding=1, strides=2, op='max') | |
def inception(kvals): | |
(p1, p2, p3, p4) = kvals | |
branch1 = [Conv((1, 1, p1[0]), **common)] | |
branch2 = [Conv((1, 1, p2[0]), **common), | |
Conv((3, 3, p2[1]), **commonp1)] | |
branch3 = [Conv((1, 1, p3[0]), **common), | |
Conv((5, 5, p3[1]), **commonp2)] | |
branch4 = [Pooling(op="max", **pool3s1p1), | |
Conv((1, 1, p4[0]), **common)] | |
return MergeBroadcast(layers=[branch1, branch2, branch3, branch4], merge="depth") | |
def main_branch(branch_nodes): | |
return [Conv((7, 7, 64), padding=3, strides=2, **common), | |
Pooling(**pool3s2p1), | |
Conv((1, 1, 64), **common), | |
Conv((3, 3, 192), **commonp1), | |
Pooling(**pool3s2p1), | |
inception([(64, ), (96, 128), (16, 32), (32, )]), | |
inception([(128,), (128, 192), (32, 96), (64, )]), | |
Pooling(**pool3s2p1), | |
inception([(192,), (96, 208), (16, 48), (64, )]), | |
branch_nodes[0], | |
inception([(160,), (112, 224), (24, 64), (64, )]), | |
inception([(128,), (128, 256), (24, 64), (64, )]), | |
inception([(112,), (144, 288), (32, 64), (64, )]), | |
branch_nodes[1], | |
inception([(256,), (160, 320), (32, 128), (128,)]), | |
Pooling(**pool3s2p1), | |
inception([(256,), (160, 320), (32, 128), (128,)]), | |
inception([(384,), (192, 384), (48, 128), (128,)]), | |
Pooling(fshape=7, strides=1, op="avg"), | |
Affine(nout=1000, init=init1, activation=Softmax(), bias=Constant(0))] | |
def aux_branch(bnode): | |
return [bnode, | |
Pooling(fshape=5, strides=3, op="avg"), | |
Conv((1, 1, 128), **common), | |
Affine(nout=1024, init=init1, activation=relu, bias=bias), | |
Dropout(keep=0.3), | |
Affine(nout=1000, init=init1, activation=Softmax(), bias=Constant(0))] | |
# Now construct the model | |
branch_nodes = [BranchNode(name='branch' + str(i)) for i in range(2)] | |
main1 = main_branch(branch_nodes) | |
aux1 = aux_branch(branch_nodes[0]) | |
aux2 = aux_branch(branch_nodes[1]) | |
model = Model(layers=Tree([main1, aux1, aux2], alphas=[1.0, 0.3, 0.3])) | |
valmetric = TopKMisclassification(k=5) | |
# dummy optimizer for benchmarking | |
# training implementation coming soon | |
opt_gdm = GradientDescentMomentum(0.0, 0.0) | |
opt_biases = GradientDescentMomentum(0.0, 0.0) | |
opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases}) | |
# setup cost function as CrossEntropy | |
cost = Multicost(costs=[GeneralizedCost(costfunc=CrossEntropyMulti()), | |
GeneralizedCost(costfunc=CrossEntropyMulti()), | |
GeneralizedCost(costfunc=CrossEntropyMulti())], | |
weights=[1, 0., 0.]) # We only want to consider the CE of the main path | |
model.load_params("/home/iaroslav/temp/googlenet.p") | |
model.initialize(test, cost) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment