Created
November 8, 2022 13:35
-
-
Save iaverypadberg/da12e8894ee57ed60b51b8c87ba5c440 to your computer and use it in GitHub Desktop.
A python script for running tflite inference on a folder of images
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sqlite3 import adapt | |
import numpy as np | |
from PIL import Image | |
import glob | |
import cv2 | |
import numpy as np | |
import tflite_runtime.interpreter as tflite | |
from pycoral.adapters import detect | |
from pycoral.utils.dataset import read_label_file | |
from PIL import Image | |
from PIL import ImageDraw | |
import collections | |
def draw_object(draw, obj): | |
"""Draws detection candidate on the image. | |
Args: | |
draw: the PIL.ImageDraw object that draw on the image. | |
obj: The detection candidate. | |
""" | |
draw.rectangle(obj.bbox, outline='red') | |
draw.text((obj.bbox[0], obj.bbox[3]), obj.label, fill='#0000') | |
draw.text((obj.bbox[0], obj.bbox[3] + 10), str(obj.score), fill='#0000') | |
Object = collections.namedtuple('Object', ['label', 'score', 'bbox']) | |
shape = 160 | |
model = '/home/isaac/Desktop/spaghetti/spag_models/spaghetti_spruce_2_train23.tflite' | |
files=glob.glob("/home/isaac/Desktop/dataset/320_test/*.jpg") | |
images=np.zeros([len(files),shape,shape,3]).astype(np.uint8) | |
for i in range(len(files)): | |
look=cv2.imread(files[i]) | |
images[i] = cv2.resize(look,(shape,shape)) | |
images[i]=cv2.cvtColor(images[i],cv2.COLOR_BGR2RGB) | |
interpreter = tflite.Interpreter(model) | |
interpreter_input_details = interpreter.get_input_details() | |
interpreter.allocate_tensors() | |
interpreter_output_details = interpreter.get_output_details() | |
labels = read_label_file("/home/isaac/Desktop/spaghetti/spaghetti_meta/spruce_2_labels.txt") | |
count = 0 | |
for image in files: | |
img = Image.open(image).convert('RGB') | |
draw = ImageDraw.Draw(img) | |
objects_by_label = dict() | |
word_count = 0 | |
interpreter.set_tensor(interpreter_input_details[0]['index'],np.expand_dims(img, axis=0)) | |
interpreter.invoke() | |
objs = detect.get_objects(interpreter,score_threshold=.5) | |
for obj in objs: | |
bbox = [obj.bbox.xmin, obj.bbox.ymin, obj.bbox.xmax, obj.bbox.ymax] | |
label = labels.get(obj.id, '') | |
objects_by_label.setdefault(label,[]).append(Object(label, obj.score, bbox)) | |
for label, objects in objects_by_label.items(): | |
for obj in objects: | |
draw_object(draw, obj) | |
# img.show() | |
img.save(f"/home/isaac/Desktop/dataset/320_test_complete/result_{count}.jpg") | |
count+=1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment