Created
February 10, 2016 17:19
-
-
Save ibab/45c3d886c182a1ea26d5 to your computer and use it in GitHub Desktop.
Simple fit with tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
from scipy.optimize import minimize | |
import matplotlib | |
matplotlib.use('PDF') | |
import matplotlib.pyplot as plt | |
# Generate dataset | |
data = np.random.normal(0, 1, 1000) | |
sess = tf.Session() | |
# Lots of casting here, unfortunately | |
X = tf.Variable(data) | |
mu = tf.Variable(np.float64(1)) | |
sigma = tf.Variable(np.float64(1)) | |
# Define negative log-likelihood and gradient | |
def normal_log(X, mu, sigma, left=-np.inf, right=np.inf): | |
val = -tf.log(tf.constant(np.sqrt(2 * np.pi), dtype=tf.float64) * sigma) - \ | |
tf.pow(X - mu, 2) / (tf.constant(2, dtype=tf.float64) * tf.pow(sigma, 2)) | |
return val | |
nll = -tf.reduce_sum(normal_log(X, mu, sigma)) | |
grad = tf.gradients(nll, [mu, sigma]) | |
def objective(params): | |
mu_, sigma_ = params | |
return sess.run(nll, feed_dict={ mu: mu_, sigma: sigma_ }) | |
def gradient(params): | |
mu_, sigma_ = params | |
ret = sess.run(grad, feed_dict={ mu: mu_, sigma: sigma_ }) | |
return np.array(ret) | |
# Variables need to be initialized | |
init = tf.initialize_all_variables() | |
sess.run(init) | |
# Find optimum | |
ret = minimize(objective, x0=np.array([5, 5]), jac=gradient) | |
params = ret['x'] | |
# Plot results | |
plt.hist(data, bins=20, histtype='step', color='k', normed=True) | |
xs = np.linspace(-5, 5, 200) | |
plt.plot(xs, sess.run(tf.exp(normal_log(xs, *params)))) | |
plt.savefig('out.pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment