Last active
December 20, 2017 10:22
-
-
Save ibanezmatt13/e56f75cfb90c60baafef1401bd8ba9e0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Quasi-1D nozzle with HLL and nonequilibrium vibration of N2 | |
# R.Deiterding Dec. 2016 | |
# Modified by Matthew Beckett 2017 | |
import numpy as np | |
import time | |
import math as m | |
import matplotlib | |
import matplotlib.pyplot as plt | |
print("start CPU time = {} s".format(time.clock())) | |
# Input data (or via function arguments) | |
L = 0.0294 | |
P0 = 10*101325 | |
theta_vib = 3340.0 | |
C = 721.434e-6 | |
K = 1.91e6 | |
R = 297 | |
T0 = 4000 | |
rho0 = P0/(R * T0) | |
gamma = 1.4 | |
a0 = m.sqrt(gamma*R*T0) | |
nstep = 2000 | |
dt = 0.0025 | |
Nx = 121 | |
U = np.zeros((Nx,4)) | |
F, Ftil = np.zeros((Nx,4)), np.zeros((Nx,4)) | |
J, J2, pA = np.zeros(Nx), np.zeros(Nx), np.zeros(Nx) | |
############## NEW GEOMETRY ################## | |
Nx = 121 | |
dY = 1.0 / (Nx - 1.0) | |
XoverL = np.arange(-0.5, 0.5+dY, dY) | |
evin = 0.61 | |
line = ((0.56-evin)/0.4)*(XoverL + 0.5) + evin | |
line2 = ((0.425-0.56)/(.1))*XoverL + 0.425 | |
line3 = ((0.36-0.41)/(.5))*XoverL + 0.425 | |
hit_point1 = 0 | |
hit_point2 = 0 | |
point1hit = False | |
for i in range(0, len(XoverL)): | |
if float(XoverL[i]) > -0.1 and not point1hit: | |
hit_point1 = i | |
point1hit = True | |
if float(XoverL[i]) > 1.0E-14: | |
hit_point2 = i-1 | |
break | |
line[hit_point1:] = line2[hit_point1:] | |
line[hit_point2:] = line3[hit_point2:] | |
line = line / gamma | |
flip_point = 0 | |
Y = XoverL + 0.15 | |
A_ratio = 20*(0.15-0.33768675*(Y**(1/3))+0.10129268*(Y**(1/2))+0.26794919*Y) | |
A_ratio2 = 20*(0.09791353-Y) | |
for i in range(0, len(Y)): | |
if Y[i] >= 0.0178699: | |
flip_point = i | |
break | |
A_ratio[0:flip_point] = A_ratio2[0:flip_point] | |
Afactor1 = (5.35898 - (2.25125/(Y**(2/3))) + (1.01293*(Y**(-1/2))))/A_ratio | |
Afactor2 = -20.*np.ones(Nx)/A_ratio | |
AFACTOR = Afactor2 | |
AFACTOR[flip_point:] = Afactor1[flip_point:] | |
################################################# | |
# Initial condition | |
rho = np.zeros(Nx) | |
T = np.zeros(Nx) | |
V = np.zeros(Nx) | |
rho = 1-0.7*(XoverL + 0.5) | |
T = 1-0.5*(XoverL + 0.5) | |
V = (0.1+1.09*(XoverL+0.5))*np.sqrt(T) | |
z = 0 | |
test = np.zeros(Nx) | |
for i in range(0, Nx): | |
U[i][0] = rho[i]*A_ratio[i] | |
U[i][1] = U[i][0]*V[i] | |
U[i][2] = U[i][0]*((T[i]/((2./5.)*gamma)) + 0.5*V[i]**2 + line[i]) | |
U[i][3] = U[i][0] * line[i] | |
# Main loop | |
for n in range(1,nstep): | |
# Predictor | |
for i in range(0, Nx): | |
T_tr = (2/5)*(gamma)*((U[i][2] / U[i][0]) - 0.5*((U[i][1] / U[i][0])**2) - (U[i][3] / U[i][0])) | |
pA[i] = U[i][0]*(1/gamma)*T_tr | |
evib_eq = ((R*theta_vib)/(m.exp(theta_vib / (T_tr*T0))-1))/(gamma*R*T0) | |
tau_vib = ((C/((rho0*(a0**2))*pA[i]/A_ratio[i]))*m.exp((K/(T_tr*T0))**(1/3)))*(a0/L) | |
#tau_vib = (a*m.exp(b*((T_tr*T0)**(1/3)))/(rho0*U[i][0]/A_ratio[i]))*(a0/L) | |
F[i][0] = U[i][1] | |
F[i][1] = U[i][1]**2/U[i][0] + pA[i] | |
F[i][2] = (U[i][2]+pA[i])*U[i][1]/U[i][0] | |
F[i][3] = U[i][3] * U[i][1] / U[i][0] | |
J[i] = pA[i]*AFACTOR[i] | |
J2[i] = U[i][0] * ((evib_eq - (U[i][3]/U[i][0])) / tau_vib) | |
for i in range(0,Nx-1): | |
Vl = U[i][1]/U[i][0] | |
al = m.sqrt(gamma*pA[i]/U[i][0]) | |
Vr = U[i+1][1]/U[i+1][0] | |
ar = m.sqrt(gamma*pA[i+1]/U[i+1][0]) | |
sl = min([Vl-al,Vr-ar]) | |
sr = max([Vl+al,Vr+ar]) | |
if sr < 0.: | |
Ftil[i] = F[i+1] | |
elif sl > 0.: | |
Ftil[i] = F[i] | |
else: | |
Ftil[i] = (sr*F[i]-sl*F[i+1]+sl*sr*(U[i+1]-U[i]))/(sr-sl) | |
for i in range(1, Nx-1): | |
U[i] = U[i] + (-(Ftil[i] - Ftil[i-1])/dY)*dt | |
U[i][1] = U[i][1] + J[i]*dt | |
U[i][3] = U[i][3] + J2[i]*dt | |
# Inflow condition (based on isentropic flow from stagnation conditions) | |
Vin = U[1][1]/U[1][0] # extrapolate velocity in inflow | |
Tin = 1.0 - 0.5*(gamma - 1.0)*Vin**2 | |
rhoin = (1.0 + 0.5*(gamma - 1.0)*Vin**2/Tin)**(-1.0/(gamma - 1.0)) | |
#print("rhoin:") | |
#print(rhoin) | |
evib_in = ((R*theta_vib)/(m.exp(theta_vib / (T0*Tin))-1))/(gamma*R*T0) | |
U[0][0] = rhoin*A_ratio[0] | |
U[0][1] = U[0][0]*Vin | |
U[0][2] = U[0][0]*((Tin/((2./5.)*gamma)) + 0.5*Vin**2 + evib_in) | |
U[0][3] = U[0][0] * evib_in | |
##print(U[0]) | |
# Outflow condition (fixed pressure, extrapolate other quantitites) | |
U[Nx-1] = U[Nx-2] | |
# Table output | |
derived_total, total_energy, internal_energy, kinetic_energy, rhop, Vp, Tp, pp, Mp, evibp, pressure = np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx), np.zeros(Nx) | |
for i in range(0, Nx): | |
rhop[i] = U[i][0] / A_ratio[i] | |
Vp[i] = U[i][1]/U[i][0] | |
Tp[i] = (2./5.)*gamma * (U[i][2] / U[i][0] - (0.5 * Vp[i]*Vp[i]) - (U[i][3] / U[i][0])); | |
Mp[i] = Vp[i]/m.sqrt(Tp[i]) | |
pp[i] = Tp[i]*rhop[i] | |
evibp[i] = (U[i][3] / U[i][0])*(a0**2)/(R*T0) | |
pressure[i] = ((pA[i]/A_ratio[i])*rho0*(a0**2))/P0 | |
total_energy[i] = U[i][2] / U[i][0] | |
kinetic_energy[i] = 0.5*(Vp[i]*Vp[i]) | |
internal_energy[i] = (Tp[i]/((2./5.)*gamma)) | |
print ("%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f" % (XoverL[i], A_ratio[i], rhop[i], Vp[i], Tp[i], evibp[i], Mp[i])) | |
print("end CPU time = {} s".format(time.clock())) | |
derived_total = internal_energy + kinetic_energy + evibp | |
# Graphic output | |
matplotlib.rc('text', usetex = True) | |
params = {'text.latex.preamble' : [r'\usepackage{siunitx}', r'\usepackage{amsmath}', r'\usepackage{gensymb}']} | |
plt.rcParams.update(params) | |
fontProperties = {'family':'serif', 'weight': 'bold', 'size': 20} | |
fig = plt.figure(num=None, figsize=(8, 6), dpi=150, facecolor='w', edgecolor='k') | |
ax1 = fig.add_subplot(1, 1, 1) | |
ax1.set_xlabel(r"Distance along nozzle, $x/L$", fontProperties) | |
ax1.set_ylabel(r"Vibrational energy, $e_{vib}/RT_0$", fontProperties) | |
ax1.set_ylim(0.35, 0.70) | |
plt.plot(XoverL, evibp, color='black', lw=2) | |
plt.plot(XoverL, line*gamma, '--', color='black', lw=2) | |
ax1.set_xticklabels(ax1.get_xticks(), fontProperties) | |
ax1.set_yticklabels(ax1.get_yticks(), fontProperties) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment