Created
May 8, 2014 20:41
-
-
Save ibanezmatt13/e72e43feca4a50d3905f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Cutdown" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ I = \\frac{\\epsilon}{(R+r)} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ P = I^2R $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ P = \\frac{\\epsilon^2R}{(R+r)^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi A = \\frac{\\epsilon^2R}{(R+r)^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ A = \\pi dL $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi \\pi dL = \\frac{\\epsilon^2R}{(R+r)^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ R = \\frac{\\rho L}{A} = \\frac{\\rho L}{0.25\\pi d^2} = \\frac{4\\rho L}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi \\pi dL (R+r)^2 = \\epsilon^2 R $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi \\pi dL \\left(\\frac{4\\rho L}{\\pi d^2}+r\\right)^2 = \\epsilon^2 \\frac{4\\rho L}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi \\pi d\\left(\\frac{4\\rho L}{\\pi d^2}+r\\right)^2 = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\Phi \\pi d\\left(\\frac{16\\rho^2L^2}{\\pi^2d^4} + \\frac{8\\rho Lr}{\\pi d^2} + r^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\left(\\frac{16\\Phi \\pi d\\rho^2L^2}{\\pi^2d^4} + \\frac{8\\Phi \\pi d\\rho Lr}{\\pi d^2} + \\Phi \\pi dr^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\left(\\frac{16\\Phi\\rho^2L^2}{\\pi d^3} + \\frac{8\\Phi\\rho Lr}{d} + \\Phi \\pi dr^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "#$$ \\frac{16\\Phi\\rho^2}{\\pi d^3}L^2 + \\frac{8\\Phi\\rho r}{d}L + \\left(\\Phi \\pi dr^2 - \\frac{\\epsilon^2 4\\rho}{\\pi d^2}\\right) = 0 $$" | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment