Skip to content

Instantly share code, notes, and snippets.

@ibanezmatt13
Created May 8, 2014 20:41
Show Gist options
  • Save ibanezmatt13/e72e43feca4a50d3905f to your computer and use it in GitHub Desktop.
Save ibanezmatt13/e72e43feca4a50d3905f to your computer and use it in GitHub Desktop.
{
"metadata": {
"name": "Cutdown"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ I = \\frac{\\epsilon}{(R+r)} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ P = I^2R $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ P = \\frac{\\epsilon^2R}{(R+r)^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi A = \\frac{\\epsilon^2R}{(R+r)^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ A = \\pi dL $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi \\pi dL = \\frac{\\epsilon^2R}{(R+r)^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ R = \\frac{\\rho L}{A} = \\frac{\\rho L}{0.25\\pi d^2} = \\frac{4\\rho L}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi \\pi dL (R+r)^2 = \\epsilon^2 R $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi \\pi dL \\left(\\frac{4\\rho L}{\\pi d^2}+r\\right)^2 = \\epsilon^2 \\frac{4\\rho L}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi \\pi d\\left(\\frac{4\\rho L}{\\pi d^2}+r\\right)^2 = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\Phi \\pi d\\left(\\frac{16\\rho^2L^2}{\\pi^2d^4} + \\frac{8\\rho Lr}{\\pi d^2} + r^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\left(\\frac{16\\Phi \\pi d\\rho^2L^2}{\\pi^2d^4} + \\frac{8\\Phi \\pi d\\rho Lr}{\\pi d^2} + \\Phi \\pi dr^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\left(\\frac{16\\Phi\\rho^2L^2}{\\pi d^3} + \\frac{8\\Phi\\rho Lr}{d} + \\Phi \\pi dr^2\\right) = \\frac{\\epsilon^2 4\\rho}{\\pi d^2} $$"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "#$$ \\frac{16\\Phi\\rho^2}{\\pi d^3}L^2 + \\frac{8\\Phi\\rho r}{d}L + \\left(\\Phi \\pi dr^2 - \\frac{\\epsilon^2 4\\rho}{\\pi d^2}\\right) = 0 $$"
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment