Created
October 20, 2010 14:28
-
-
Save ibtaylor/636525 to your computer and use it in GitHub Desktop.
project euler #1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE BangPatterns, MagicHash #-} | |
module Main where | |
import Criterion.Main | |
import GHC.Base | |
import GHC.Prim | |
import Criterion.Config | |
import Criterion.Main | |
import Data.Monoid | |
import qualified Criterion.MultiMap as M | |
{- | |
If we list all the natural numbers below 10 that are multiples of 3 or 5, we | |
get 3, 5, 6 and 9. The sum of these multiples is 23. | |
Find the sum of all the multiples of 3 or 5 below 1000. | |
http://projecteuler.net/index.php?section=problems&id=1 | |
cabal install criterion -fchart | |
ghc --make E1.hs -O3 -fforce-recomp -funbox-strict-fields -fvia-C -optc-O3 | |
./E1 -u e1.csv | |
pdftk e1-sol*.pdf cat output e1.pdf | |
-} | |
myConfig = | |
defaultConfig | |
{ cfgPerformGC = Last (return True) | |
, cfgPlot = M.singleton KernelDensity (PDF 470 175) | |
-- , cfgPlotSameAxis = Last (return True) | |
, cfgVerbosity = Last (return Verbose) | |
} | |
main :: IO () | |
main = do | |
let (r1:rs) = map (\f -> f n) [sol1, sol3, sol4, sol5, sol6, sol7, sol8] | |
assert (all (== r1) rs) $ | |
defaultMainWith myConfig (return ()) | |
[ bgroup "e1" | |
[ bench "sol1" (whnf sol1 n) -- :| | |
, bench "sol2" (whnf sol2 n) -- :| | |
, bench "sol3" (whnf sol3 n) -- :O | |
, bench "sol4" (whnf sol4 n) -- :( | |
, bench "sol5" (whnf sol5 n) -- :( | |
, bench "sol6" (whnf sol6 n) -- :( | |
, bench "sol7" (whnf sol7 n) -- :) | |
, bench "sol8" (whnf sol8 n) -- :^)= | |
] | |
] | |
where | |
n = 100000 | |
sol1 :: Int -> Int | |
sol1 n = | |
a+b-c | |
where | |
!a = sum [3,6..end] | |
!b = sum [5,10..end] | |
!c = sum [15,30..end] | |
!end = pred n | |
sol2 :: Int -> Int | |
sol2 n = | |
a+b | |
where | |
!a = sum [3,6..end] | |
!b = sum [x | x <- [5,10..end], x `mod` 3 /= 0] | |
!end = pred n | |
sol3 :: Int -> Int | |
sol3 n = | |
sum [ x | x <- [3..end], x `mod` 3 == 0 || x `mod` 5 == 0 ] | |
where | |
!end = pred n | |
sol4 :: Int -> Int | |
sol4 n = | |
f 3 + f 5 - f 15 | |
where | |
f s = g 0 s | |
where | |
g !a !c | |
| c >= n = a | |
| otherwise = g (a+c) (c+s) | |
sol5 :: Int -> Int | |
sol5 n = | |
f + h | |
where | |
!f = let g !a !c = if c >= n then a else g (a+c) (c+3) | |
in g 0 3 | |
!h = let i !a !c = if c >= n then a else j (a+c) (c+5) | |
j !a !c = if c >= n then a else k (a+c) (c+5) | |
k !a !c = if c >= n then a else i a (c+5) | |
in i 0 5 | |
sol6 :: Int -> Int | |
sol6 (I# n) = | |
I# (f +# h) | |
where | |
!f = let g a c = if c >=# n then a else g (a+#c) (c+#3#) | |
in g 0# 3# | |
!h = let i a c = if c >=# n then a else j (a+#c) (c+#5#) | |
j a c = if c >=# n then a else k (a+#c) (c+#5#) | |
k a c = if c >=# n then a else i a (c+#5#) | |
in i 0# 5# | |
sol7 :: Int -> Int | |
sol7 n = | |
sumOneToNStep 3 + sumOneToNStep 5 - sumOneToNStep 15 | |
where | |
sumOneToNStep !x = x * sumOneTo (end `div` x) | |
sumOneTo !x = (x*(x+1)) `div` 2 | |
!end = pred n | |
sol8 :: Int -> Int | |
sol8 (I# n) = | |
I# (sumOneToNStep 3# +# sumOneToNStep 5# -# sumOneToNStep 15#) | |
where | |
sumOneToNStep :: Int# -> Int# | |
sumOneToNStep x = x *# sumOneTo ((n -# 1#) `divInt#` x) | |
sumOneTo :: Int# -> Int# | |
sumOneTo x = (x *# (x +# 1#)) `divInt#` 2# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment