Created
January 15, 2021 15:59
-
-
Save ice1000/2528907b862e2773f31eb38ab2189703 to your computer and use it in GitHub Desktop.
Solution to some propositional truncation problems :)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- twitter thread: https://twitter.com/EgbertRijke/status/1349865209591173120 | |
{-# OPTIONS --cubical #-} | |
open import Cubical.HITs.PropositionalTruncation using (∥_∥; ∣_∣; squash; rec) | |
open import Cubical.Relation.Nullary | |
open import Cubical.Foundations.Function using (_∘_; idfun) | |
open import Cubical.Data.Sigma using (_×_; fst; snd) | |
import Cubical.Data.Empty as ⊥ using (elim) | |
variable A : Set | |
infix 1 _<->_ | |
_<->_ : Set -> Set -> Set | |
A <-> B = (A -> B) × (B -> A) | |
exA : ∥ A ∥ <-> ∥ ∥ A ∥ ∥ | |
exA .fst a = ∣ a ∣ | |
exA .snd = rec squash (idfun _) | |
exA' : ∥ ∥ A ∥ ∥ ≡ ∥ A ∥ | |
exA' = propTruncIdempotent propTruncIsProp | |
exB : Dec ∥ A ∥ <-> ∥ Dec A ∥ | |
exB .fst (yes p) = rec squash (∣_∣ ∘ yes) p | |
exB .fst (no np) = ∣ no (np ∘ ∣_∣) ∣ | |
exB .snd = rec (isPropDec squash) f where | |
f : Dec A → Dec ∥ A ∥ | |
f (yes p) = yes ∣ p ∣ | |
f (no np) = no (rec ⊥.elim np) | |
exC : Dec A -> ∥ A ∥ -> A | |
exC (yes p) _ = p | |
exC (no np) = ⊥.elim ∘ rec (\ ()) np | |
exC' : Dec A -> ∥ A ∥ -> A | |
exC' d = Dec→Stable d ∘ notEmptyPopulated ∘ populatedBy | |
-- exD : NonEmpty ∥ A ∥ <-> NonEmpty A | |
exD : ¬ ¬ ∥ A ∥ <-> ¬ ¬ A | |
exD .fst p = p ∘ rec (\ ()) | |
exD .snd p x = p (x ∘ ∣_∣) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment