Last active
August 7, 2023 14:06
-
-
Save ice1000/5a2eec14e0baab7a96ee807a8dd83555 to your computer and use it in GitHub Desktop.
Useless code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --cubical #-} | |
open import Cubical.Data.Int | |
open import Cubical.Foundations.Prelude | |
open import Cubical.Foundations.HLevels | |
open import Cubical.Foundations.Isomorphism | |
open import Cubical.HITs.SetTruncation | |
-- Maps out of a set-truncated int can only target sets, | |
-- yet it's equivalent to the normal int | |
data Int : Type where | |
inj : ℤ → Int | |
trunc : isSet Int | |
fwd : Int → ∥ ℤ ∥₂ | |
fwd (inj x) = ∣ x ∣₂ | |
fwd (trunc x y p q i j) = squash₂ (fwd x) (fwd y) (cong fwd p) (cong fwd q) i j | |
open Iso | |
basic : Iso Int ∥ ℤ ∥₂ | |
fun basic = fwd | |
inv basic = rec trunc inj | |
rightInv basic = lem | |
where | |
lem : ∀ x → fwd (rec trunc inj x) ≡ x | |
lem ∣ x ∣₂ = refl | |
lem (squash₂ x y p q i j) k = | |
squash₂ (lem x k) (lem y k) | |
(λ l → lem (p l) k) | |
(λ l → lem (q l) k) | |
i j | |
leftInv basic = lem | |
where | |
lem : ∀ x → rec trunc inj (fwd x) ≡ x | |
lem (inj x) = refl | |
lem (trunc x y p q i j) k = | |
trunc (lem x k) (lem y k) | |
(λ l → lem (p l) k) | |
(λ l → lem (q l) k) | |
i j | |
thm : Iso Int ℤ | |
thm = compIso basic (setTruncIdempotentIso isSetℤ) | |
-- unwrap : Int → ℤ | |
-- unwrap (inj x) = x | |
-- unwrap (trunc x y p q i j) = | |
-- isSetℤ (unwrap x) (unwrap y) (cong unwrap p) (cong unwrap q) i j | |
-- theorem : ∀ x → inj (unwrap x) ≡ x | |
-- theorem (inj x) = refl | |
-- theorem (trunc x y p q i j) = {!lemma isSetℤ!} | |
-- where | |
-- lemma : (r : isSet ℤ) → | |
-- inj (r (unwrap x) (unwrap y) (cong unwrap p) (cong unwrap q) i j) ≡ trunc x y p q i j | |
-- lemma r = lem2 ∙∙ theorem x ∙∙ lem1 | |
-- where | |
-- lem1 : x ≡ trunc x y p q i j | |
-- lem1 k = trunc x y p q (i ∧ k) (j ∧ k) | |
-- lem2' : ∀ x y p q → r x y p q i j ≡ x | |
-- lem2' x y p q k = r x y p q (i ∧ ~ k) (j ∧ ~ k) | |
-- lem2 : inj (r (unwrap x) (unwrap y) (cong unwrap p) (cong unwrap q) i j) ≡ inj (unwrap x) | |
-- lem2 = cong inj (lem2' (unwrap x) (unwrap y) (cong unwrap p) (cong unwrap q)) | |
-- thm : Iso Int ℤ | |
-- fun thm = unwrap | |
-- inv thm = inj | |
-- rightInv thm _ = refl | |
-- leftInv thm = theorem |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment