Last active
October 30, 2019 00:14
-
-
Save ice1000/d0a1aa5a17bfb3d66bfeec3045d11b60 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --cubical #-} | |
open import Cubical.Core.Everything | |
open import Cubical.Data.Maybe | |
open import Cubical.Data.Nat | |
open import Cubical.Foundations.Prelude | |
open import Cubical.Foundations.Isomorphism | |
data ω : Type₀ where | |
zero : ω | |
suc : ω → ω | |
inf : ω | |
suc-inf : inf ≡ suc inf | |
ω′ : Type₀ | |
ω′ = Maybe ℕ | |
zero′ : ω′ | |
zero′ = just zero | |
suc′ : ω′ → ω′ | |
-- suc′ = map-Maybe suc | |
suc′ nothing = nothing | |
suc′ (just x) = just (suc x) | |
inf′ : ω′ | |
inf′ = nothing | |
ω→ω′ : ω → ω′ | |
ω→ω′ zero = zero′ | |
ω→ω′ (suc n) = suc′ (ω→ω′ n) | |
ω→ω′ inf = inf′ | |
ω→ω′ (suc-inf i) = inf′ | |
ℕ→ω : ℕ → ω | |
ℕ→ω zero = zero | |
ℕ→ω (suc n) = suc (ℕ→ω n) | |
ω′→ω : ω′ → ω | |
ω′→ω nothing = inf | |
ω′→ω (just n) = ℕ→ω n | |
ℕ→ω→ω′ : ∀ n → ω→ω′ (ℕ→ω n) ≡ just n | |
ℕ→ω→ω′ zero = refl | |
ℕ→ω→ω′ (suc n) = cong suc′ (ℕ→ω→ω′ n) | |
ω′→ω→ω′ : ∀ n → ω→ω′ (ω′→ω n) ≡ n | |
ω′→ω→ω′ nothing = refl | |
ω′→ω→ω′ (just n) = ℕ→ω→ω′ n | |
suc-hom : ∀ n → ω′→ω (suc′ n) ≡ suc (ω′→ω n) | |
suc-hom nothing = suc-inf | |
suc-hom (just x) = refl | |
ω→ω′→ω : ∀ n → ω′→ω (ω→ω′ n) ≡ n | |
ω→ω′→ω zero = refl | |
ω→ω′→ω inf = refl | |
ω→ω′→ω (suc n) = suc-hom (ω→ω′ n) ∙ cong suc (ω→ω′→ω n) | |
ω→ω′→ω (suc-inf i) = lemma i | |
where | |
lemma : (λ i → inf ≡ suc-inf i) [ refl ≡ suc-inf ∙ refl ] | |
lemma i j = hcomp (λ k → λ | |
{ (i = i0) → inf | |
; (i = i1) → compPath-filler suc-inf refl k j | |
; (j = i0) → inf | |
; (j = i1) → suc-inf i | |
}) (suc-inf (i ∧ j)) | |
open Iso | |
ω⇔ω′ : Iso ω ω′ | |
ω⇔ω′ .fun = ω→ω′ | |
ω⇔ω′ .inv = ω′→ω | |
ω⇔ω′ .leftInv = ω→ω′→ω | |
ω⇔ω′ .rightInv = ω′→ω→ω′ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment