-
-
Save icemelon/860d3d2c9566d6f69fa8112840dd95c1 to your computer and use it in GitHub Desktop.
import time | |
import argparse | |
import numpy as np | |
import mxnet as mx | |
import gluonnlp as nlp | |
import tvm | |
from tvm import relay | |
import tvm.contrib.graph_runtime as runtime | |
def timer(thunk, repeat=1, number=10, dryrun=3, min_repeat_ms=1000): | |
"""Helper function to time a function""" | |
for i in range(dryrun): | |
thunk() | |
ret = [] | |
for _ in range(repeat): | |
while True: | |
beg = time.time() | |
for _ in range(number): | |
thunk() | |
end = time.time() | |
lat = (end - beg) * 1e3 | |
if lat >= min_repeat_ms: | |
break | |
number = int(max(min_repeat_ms / (lat / number) + 1, number * 1.618)) | |
ret.append(lat / number) | |
return ret | |
parser = argparse.ArgumentParser(description="Optimize BERT-base model from GluonNLP") | |
parser.add_argument("-b", "--batch", type=int, default=1, | |
help="Batch size (default: 1)") | |
parser.add_argument("-l", "--length", type=int, default=128, | |
help="Sequence length (default: 128)") | |
args = parser.parse_args() | |
batch = args.batch | |
seq_length = args.length | |
# Instantiate a BERT classifier using GluonNLP | |
model_name = 'bert_12_768_12' | |
dataset = 'book_corpus_wiki_en_uncased' | |
mx_ctx = mx.cpu() | |
bert, _ = nlp.model.get_model( | |
name=model_name, | |
ctx=mx_ctx, | |
dataset_name=dataset, | |
pretrained=False, | |
use_pooler=True, | |
use_decoder=False, | |
use_classifier=False) | |
model = nlp.model.BERTClassifier(bert, dropout=0.1, num_classes=2) | |
model.initialize(ctx=mx_ctx) | |
model.hybridize(static_alloc=True) | |
# Prepare input data | |
dtype = "float32" | |
inputs = np.random.randint(0, 2000, size=(batch, seq_length)).astype(dtype) | |
token_types = np.random.uniform(size=(batch, seq_length)).astype(dtype) | |
valid_length = np.asarray([seq_length] * batch).astype(dtype) | |
# Convert to MXNet NDArray and run the MXNet model | |
inputs_nd = mx.nd.array(inputs, ctx=mx_ctx) | |
token_types_nd = mx.nd.array(token_types, ctx=mx_ctx) | |
valid_length_nd = mx.nd.array(valid_length, ctx=mx_ctx) | |
mx_out = model(inputs_nd, token_types_nd, valid_length_nd) | |
mx_out.wait_to_read() | |
# Benchmark the MXNet latency | |
res = timer(lambda: model(inputs_nd, token_types_nd, valid_length_nd).wait_to_read(), | |
repeat=3, | |
dryrun=5, | |
min_repeat_ms=1000) | |
print(f"MXNet latency for batch {batch} and seq length {seq_length}: {np.mean(res):.2f} ms") | |
###################################### | |
# Optimize the BERT model using TVM | |
###################################### | |
# First, Convert the MXNet model into TVM Relay format | |
shape_dict = { | |
'data0': (batch, seq_length), | |
'data1': (batch, seq_length), | |
'data2': (batch,) | |
} | |
mod, params = relay.frontend.from_mxnet(model, shape_dict) | |
# Compile the imported model | |
target = "llvm -mcpu=skylake-avx512 -libs=cblas" | |
with relay.build_config(opt_level=3, required_pass=["FastMath"]): | |
graph, lib, cparams = relay.build(mod, target, params=params) | |
# Create the executor and set the parameters and inputs | |
ctx = tvm.cpu() | |
rt = runtime.create(graph, lib, ctx) | |
rt.set_input(**cparams) | |
rt.set_input(data0=inputs, data1=token_types, data2=valid_length) | |
# Run the executor and validate the correctness | |
rt.run() | |
out = rt.get_output(0) | |
tvm.testing.assert_allclose(out.asnumpy(), mx_out.asnumpy(), rtol=1e-3, atol=1e-3) | |
# Benchmark the TVM latency | |
ftimer = rt.module.time_evaluator("run", ctx, repeat=3, min_repeat_ms=1000) | |
prof_res = np.array(ftimer().results) * 1000 | |
print(f"TVM latency for batch {batch} and seq length {seq_length}: {np.mean(prof_res):.2f} ms") |
import time | |
import argparse | |
import numpy as np | |
import mxnet as mx | |
import gluonnlp as nlp | |
import tvm | |
from tvm import relay | |
import tvm.contrib.graph_runtime as runtime | |
def timer(thunk, repeat=1, number=10, dryrun=3, min_repeat_ms=1000): | |
"""Helper function to time a function""" | |
for i in range(dryrun): | |
thunk() | |
ret = [] | |
for _ in range(repeat): | |
while True: | |
beg = time.time() | |
for _ in range(number): | |
thunk() | |
end = time.time() | |
lat = (end - beg) * 1e3 | |
if lat >= min_repeat_ms: | |
break | |
number = int(max(min_repeat_ms / (lat / number) + 1, number * 1.618)) | |
ret.append(lat / number) | |
return ret | |
parser = argparse.ArgumentParser(description="Optimize DistilBERT model from GluonNLP") | |
parser.add_argument("-b", "--batch", type=int, default=1, | |
help="Batch size (default: 1)") | |
parser.add_argument("-l", "--length", type=int, default=128, | |
help="Sequence length (default: 128)") | |
args = parser.parse_args() | |
batch = args.batch | |
seq_length = args.length | |
# Instantiate a BERT classifier using GluonNLP | |
model_name = 'distilbert_6_768_12' | |
dataset = 'distilbert_book_corpus_wiki_en_uncased' | |
mx_ctx = mx.cpu() | |
bert, _ = nlp.model.get_model( | |
name=model_name, | |
ctx=mx_ctx, | |
dataset_name=dataset, | |
pretrained=False, | |
use_pooler=False, | |
use_decoder=False, | |
use_classifier=False) | |
model = nlp.model.RoBERTaClassifier(bert, dropout=0.1, num_classes=2) | |
model.initialize(ctx=mx_ctx) | |
model.hybridize(static_alloc=True) | |
# Prepare input data | |
dtype = "float32" | |
inputs = np.random.randint(0, 2000, size=(batch, seq_length)).astype(dtype) | |
valid_length = np.asarray([seq_length] * batch).astype(dtype) | |
# Convert to MXNet NDArray and run the MXNet model | |
inputs_nd = mx.nd.array(inputs, ctx=mx_ctx) | |
valid_length_nd = mx.nd.array(valid_length, ctx=mx_ctx) | |
mx_out = model(inputs_nd, valid_length_nd) | |
mx_out.wait_to_read() | |
# Benchmark the MXNet latency | |
res = timer(lambda: model(inputs_nd, valid_length_nd).wait_to_read(), | |
repeat=3, | |
dryrun=5, | |
min_repeat_ms=1000) | |
print(f"MXNet latency for batch {batch} and seq length {seq_length}: {np.mean(res):.2f} ms") | |
###################################### | |
# Optimize the BERT model using TVM | |
###################################### | |
# First, Convert the MXNet model into TVM Relay format | |
shape_dict = { | |
'data0': (batch, seq_length), | |
'data1': (batch,) | |
} | |
mod, params = relay.frontend.from_mxnet(model, shape_dict) | |
# Compile the imported model | |
target = "llvm -mcpu=skylake-avx512 -libs=cblas" | |
with relay.build_config(opt_level=3, required_pass=["FastMath"]): | |
graph, lib, cparams = relay.build(mod, target, params=params) | |
# Create the executor and set the parameters and inputs | |
ctx = tvm.cpu() | |
rt = runtime.create(graph, lib, ctx) | |
rt.set_input(**cparams) | |
rt.set_input(data0=inputs, data1=valid_length) | |
# Run the executor and validate the correctness | |
rt.run() | |
out = rt.get_output(0) | |
tvm.testing.assert_allclose(out.asnumpy(), mx_out.asnumpy(), rtol=1e-3, atol=1e-3) | |
# Benchmark the TVM latency | |
ftimer = rt.module.time_evaluator("run", ctx, repeat=3, min_repeat_ms=1000) | |
prof_res = np.array(ftimer().results) * 1000 | |
print(f"TVM latency for batch {batch} and seq length {seq_length}: {np.mean(prof_res):.2f} ms") |
thanks so much Haichen, that problem's solved with the lastest version tvm. However, the test still had a problem,
Cannot find config for target=llvm -keys=cpu -libs=cblas -mcpu=skylake-avx512, workload=('dense_cblas.x86', ('TENSOR', (1, 768), 'float32'), ('TENSOR', (2, 768), 'float32'), None, 'float32'). A fallback configuration is used, which may bring great performance regression.
[07:37:14] /opt/cephfs1/asr/users/qizhou.huang/qizhou/PycharmProjects/incubator-tvm/src/tir/transforms/arg_binder.cc:95: Trying to bind buffer to another one with lower alignment requirement required_alignment=128, provided_alignment=8
the after a while, coredump and exit, without other error messages. could you please help me about this?
I think it is just a warning message which means you didn't tune this op, but since you are using external libs, this warning message could be ignored in this case
thanks so much Haichen, that problem's solved with the lastest version tvm. However, the test still had a problem,
Cannot find config for target=llvm -keys=cpu -libs=cblas -mcpu=skylake-avx512, workload=('dense_cblas.x86', ('TENSOR', (1, 768), 'float32'), ('TENSOR', (2, 768), 'float32'), None, 'float32'). A fallback configuration is used, which may bring great performance regression.
[07:37:14] /opt/cephfs1/asr/users/qizhou.huang/qizhou/PycharmProjects/incubator-tvm/src/tir/transforms/arg_binder.cc:95: Trying to bind buffer to another one with lower alignment requirement required_alignment=128, provided_alignment=8
the after a while, coredump and exit, without other error messages. could you please help me about this?