Created
June 21, 2016 00:04
-
-
Save igaiga/3b85773cdaf5e81c8629465363b53d8f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# TensorFlow tutorial | |
# "MNIST For ML Beginners" | |
# https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html | |
# "Deep MNIST for Experts" | |
# https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.html | |
# prepare input data(MNIST_data) before running | |
# https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html | |
# from tensorflow.examples.tutorials.mnist import input_data | |
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
# Load input data | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
import tensorflow as tf | |
sess = tf.InteractiveSession() | |
x = tf.placeholder(tf.float32, shape=[None, 784]) | |
y_ = tf.placeholder(tf.float32, shape=[None, 10]) | |
W = tf.Variable(tf.zeros([784,10])) | |
b = tf.Variable(tf.zeros([10])) | |
sess.run(tf.initialize_all_variables()) | |
# Predicted Class and Cost Function | |
y = tf.nn.softmax(tf.matmul(x,W) + b) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
for i in range(1000): | |
batch = mnist.train.next_batch(50) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) | |
# Evaluate model | |
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | |
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) | |
#=> 0.9092 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment