Last active
October 7, 2022 01:27
-
-
Save igorkf/304ee0a704f213d341155c8e8b11fa84 to your computer and use it in GitHub Desktop.
Reduce memory usage of Pandas DataFrame
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from tqdm import tqdm | |
def reduce_mem_usage(df): | |
""" | |
From https://www.kaggle.com/valleyzw/ubiquant-lgbm-baseline | |
Iterate through all the columns of a dataframe and modify the data type to reduce memory usage. | |
""" | |
start_mem = df.memory_usage().sum() / 1024 ** 2 | |
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) | |
for col in tqdm(df.columns): | |
col_type = df[col].dtype | |
if col_type != object: | |
c_min = df[col].min() | |
c_max = df[col].max() | |
if str(col_type)[:3] == 'int': | |
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: | |
df[col] = df[col].astype(np.int8) | |
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: | |
df[col] = df[col].astype(np.int16) | |
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: | |
df[col] = df[col].astype(np.int32) | |
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: | |
df[col] = df[col].astype(np.int64) | |
else: | |
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: | |
df[col] = df[col].astype(np.float16) | |
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: | |
df[col] = df[col].astype(np.float32) | |
else: | |
df[col] = df[col].astype(np.float64) | |
else: | |
df[col] = df[col].astype('category') | |
end_mem = df.memory_usage().sum() / 1024 ** 2 | |
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) | |
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) | |
return df | |
# usage | |
# df = reduce_mem_usage(df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment