Last active
August 29, 2015 14:12
-
-
Save ih4cku/bc00fd7838846ffd0ae4 to your computer and use it in GitHub Desktop.
Predict image with trained model.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "LeNet" | |
input: "data" | |
input_dim: 1 | |
input_dim: 1 | |
input_dim: 28 | |
input_dim: 28 | |
layers { | |
name: "conv1" | |
type: CONVOLUTION | |
bottom: "data" | |
top: "conv1" | |
blobs_lr: 1 | |
blobs_lr: 2 | |
convolution_param { | |
num_output: 20 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layers { | |
name: "pool1" | |
type: POOLING | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "conv2" | |
type: CONVOLUTION | |
bottom: "pool1" | |
top: "conv2" | |
blobs_lr: 1 | |
blobs_lr: 2 | |
convolution_param { | |
num_output: 50 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layers { | |
name: "pool2" | |
type: POOLING | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "ip1" | |
type: INNER_PRODUCT | |
bottom: "pool2" | |
top: "ip1" | |
blobs_lr: 1 | |
blobs_lr: 2 | |
inner_product_param { | |
num_output: 500 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layers { | |
name: "relu1" | |
type: RELU | |
bottom: "ip1" | |
top: "ip1" | |
} | |
layers { | |
name: "ip2" | |
type: INNER_PRODUCT | |
bottom: "ip1" | |
top: "ip2" | |
blobs_lr: 1 | |
blobs_lr: 2 | |
inner_product_param { | |
num_output: 10 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layers { | |
name: "prob" | |
type: SOFTMAX | |
bottom: "ip2" | |
top: "prob" | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import caffe | |
from caffe.proto import caffe_pb2 | |
import cPickle | |
import leveldb | |
def get_db_image(): | |
db = leveldb.LevelDB('mnist_test_leveldb') | |
it = db.RangeIter() | |
key, value = it.next() | |
datum = caffe_pb2.Datum() | |
datum.ParseFromString(value) | |
arr = caffe.io.datum_to_array(datum) | |
image = arr.astype(np.float32).squeeze() | |
image /= 255 | |
return key, image | |
def main(): | |
MODEL_FILE = 'proto/lenet_deploy.prototxt' | |
PRETRAINED = 'model/lenet_iter_10000.caffemodel' | |
net = caffe.Net(MODEL_FILE, PRETRAINED) | |
net.set_phase_test() | |
net.set_mode_cpu() | |
IMAGE_FILE, gray = get_db_image() | |
plt.figure() | |
plt.imshow(gray) | |
plt.title(IMAGE_FILE) | |
im_input = gray[None, None, :, :] | |
out = net.forward(**{net.inputs[0]: im_input}) | |
probs = out[net.outputs[0]].squeeze() | |
plt.figure() | |
plt.plot(probs, '-o') | |
plt.show() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment