Created
August 5, 2016 02:33
-
-
Save ijingo/419717d84c4666c9fa1bd3ab5b0eddf2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import os | |
sys.path.append(os.path.join(os.path.dirname(__file__), '../../build/python')) | |
from singa import layer | |
from singa import metric | |
from singa import loss | |
from singa import net as ffnet | |
from singa.proto import core_pb2 | |
def add_layer_group(net, name, nb_filers, sample_shape=None): | |
net.add(layer.Conv2D(name + '_1', nb_filers, 3, 1, pad=1, | |
input_sample_shape=sample_shape)) | |
net.add(layer.Activation(name + '_1')) | |
net.add(layer.Conv2D(name + '_2', nb_filers, 3, 1, pad=1)) | |
net.add(layer.Activation(name + '_3')) | |
net.add(layer.MaxPooling2D(name, 2, 2, pad=0)) | |
def create_vgg(): | |
net = ffnet.FeedForwardNet(loss.SoftmaxCrossEntropy(), metric.Accuracy()) | |
add_layer_group(net, 'conv1', 64, (3, 32, 32)) | |
add_layer_group(net, 'conv2', 128) | |
add_layer_group(net, 'conv3', 256) | |
add_layer_group(net, 'conv4', 512) | |
add_layer_group(net, 'conv5', 512) | |
net.add(layer.Flatten('flat')) | |
net.add(layer.Dense('ip1', 512)) | |
net.add(layer.Activation('relu_ip1')) | |
net.add(layer.Dropout('drop1')) | |
net.add(layer.Dense('ip2', 10)) | |
return net | |
def ConvBnReLU(net, name, nb_filers, sample_shape=None): | |
beta_specs = {'init': 'constant', 'value': 0} | |
net.add(layer.Conv2D(name + '_1', nb_filers, 3, 1, pad=1, | |
input_sample_shape=sample_shape)) | |
#net.add(layer.BatchNormalization(name + '_2', beta_specs=beta_specs.copy())) | |
net.add(layer.Activation(name + '_3')) | |
def create_net(): | |
net = ffnet.FeedForwardNet(loss.SoftmaxCrossEntropy(), metric.Accuracy()) | |
ConvBnReLU(net, 'conv1_1', 64, (3, 32, 32)) | |
net.add(layer.Dropout('drop1', 0.3, engine='cudnn')) | |
ConvBnReLU(net, 'conv1_2', 64) | |
net.add(layer.MaxPooling2D('pool1', 2, 2, border_mode='valid')) | |
ConvBnReLU(net, 'conv2_1', 128) | |
net.add(layer.Dropout('drop2_1', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv2_2', 128) | |
net.add(layer.MaxPooling2D('pool2', 2, 2, border_mode='valid')) | |
ConvBnReLU(net, 'conv3_1', 256) | |
net.add(layer.Dropout('drop3_1', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv3_2', 256) | |
net.add(layer.Dropout('drop3_2', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv3_3', 256) | |
net.add(layer.MaxPooling2D('pool3', 2, 2, border_mode='valid')) | |
ConvBnReLU(net, 'conv4_1', 512) | |
net.add(layer.Dropout('drop4_1', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv4_2', 512) | |
net.add(layer.Dropout('drop4_2', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv4_3', 512) | |
net.add(layer.MaxPooling2D('pool4', 2, 2, border_mode='valid')) | |
ConvBnReLU(net, 'conv5_1', 512) | |
net.add(layer.Dropout('drop5_1', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv5_2', 512) | |
net.add(layer.Dropout('drop5_2', 0.4, engine='cudnn')) | |
ConvBnReLU(net, 'conv5_3', 512) | |
net.add(layer.MaxPooling2D('pool5', 2, 2, border_mode='valid')) | |
net.add(layer.Flatten('flat')) | |
net.add(layer.Dropout('drop_flat', 0.5, engine='cudnn')) | |
net.add(layer.Dense('ip1', 512)) | |
beta_specs = {'init': 'constant', 'value': 0} | |
#net.add(layer.BatchNormalization('batchnorm_ip1', beta_specs=beta_specs.copy())) | |
net.add(layer.Activation('relu_ip1')) | |
net.add(layer.Dropout('drop_ip2', 0.5, engine='cudnn')) | |
net.add(layer.Dense('ip2', 10)) | |
return net |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment