Created
October 26, 2017 05:57
-
-
Save ikarius6/26851fb7220837e8016fe0c425d34dd6 to your computer and use it in GitHub Desktop.
Red Neuronal - PHP
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
/* | |
Red Neuronal 3x12x8x2 - Mr.Jack - 10/2017 | |
3 neuronas de entrada | |
2 capas intermedias | |
12 neuronas escondidas en la capa 1 | |
8 neuronas escondidas en la capa 2 | |
2 neuronas de salida | |
*/ | |
class RedNeuronal{ | |
/*3x12*/ | |
private $w1 = [ | |
[.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5] | |
]; | |
/*12x8*/ | |
private $w2 = [ | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5], | |
[.5, .5, .5, .5, .5, .5, .5, .5] | |
]; | |
/*8x2*/ | |
private $w3 = [ | |
[.5, .5], | |
[.5, .5], | |
[.5, .5], | |
[.5, .5], | |
[.5, .5], | |
[.5, .5], | |
[.5, .5], | |
[.5, .5] | |
]; | |
/*12*/ | |
private $u2 = [.5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5]; | |
/*8*/ | |
private $u3 = [.5, .5, .5, .5, .5, .5, .5, .5]; | |
/*3*/ | |
private $u4 = [.5, .5]; | |
function run($i,$X){ | |
return $this->Y($i,$X); | |
} | |
function A2($i,$X){ | |
$sumatoria=0; | |
for($q=0; $q<3; $q++){ | |
$sumatoria += ($X[$q]*$this->w1[$q][$i]); | |
} | |
$aux1 = $sumatoria + $this->u2[$i]; | |
return $this->f($aux1); | |
} | |
function A3($i,$X){ | |
$sumatoria=0; | |
for($q=0; $q<12; $q++){ | |
$sumatoria += ($this->A2($q, $X)*$this->w2[$q][$i]); | |
} | |
$aux1 = $sumatoria + $this->u3[$i]; | |
return $this->f($aux1); | |
} | |
function Y($i,$X){ | |
$sumatoria=0; | |
for($q=0; $q<8; $q++){ | |
$sumatoria += ($this->A3($q, $X)*$this->w3[$q][$i]); | |
} | |
$aux1 = $sumatoria + $this->u4[$i]; | |
return $this->f($aux1); | |
} | |
function f($x){ | |
return 1 / (1 + exp(-$x)); | |
} | |
function delta4($Y, $sal){ | |
return $Y*(1-$Y)*($Y-$sal); | |
} | |
function delta3($k, $d4, $X){ | |
$a3=$this->A3($k,$X); | |
$sumatoria=0; | |
for($i=0; $i<2; $i++){ | |
$sumatoria += ($this->w3[$k][$i]*$d4[$i]); | |
} | |
return $a3*(1-$a3)*$sumatoria; | |
} | |
function delta2($k, $d4, $X){ | |
$a2=$this->A2($k,$X); | |
$sumatoria=0; | |
for($i=0; $i<8; $i++){ | |
$sumatoria += ($this->w2[$k][$i]*$this->delta3($i,$d4,$X)); | |
} | |
return $a2*(1-$a2)*$sumatoria; | |
} | |
function error3($k, $d4, $X){ | |
return $this->A3($k, $X)*$d4; | |
} | |
function error2($j, $k, $d4, $X){ | |
return $this->A2($j, $X)* $this->delta3($k, $d4, $X); | |
} | |
function error($j,$k,$d4,$X){ | |
return $X[$j]*$this->delta2($k,$d4,$X); | |
} | |
function BackPropagation($X,$sal){ | |
$alfa = 1; | |
$Y = [1, 1]; | |
$d4 = [1, 1]; | |
for($i=0; $i<2; $i++){ | |
$Y[$i] = $this->run($i, $X); | |
$d4[$i] = $this->delta4($Y[$i], $sal[$i]); | |
} | |
for($j=0; $j<3; $j++){ | |
for($i=0; $i<12; $i++){ | |
$this->w1[$j][$i] -= $alfa * $this->error($j, $i, $d4, $X); | |
$this->u2[$i] -= $alfa * $this->delta2($i, $d4, $X); | |
} | |
} | |
for($j=0; $j<12; $j++){ | |
for($i=0; $i<8; $i++){ | |
$this->w2[$j][$i] -= $alfa * $this->error2($j, $i, $d4, $X); | |
$this->u3[$i] -= $alfa * $this->delta3($i, $d4, $X); | |
} | |
} | |
for($j=0; $j<8; $j++){ | |
for($i=0; $i<2; $i++){ | |
$this->w3[$j][$i] -= $alfa * $this->error3($i,$d4[$i],$X); | |
$this->u4[$i] -= $alfa * $d4[$i]; | |
} | |
} | |
} | |
} | |
$rn = new RedNeuronal(); | |
//Estado inicial de la red | |
echo "S1:". PHP_EOL; | |
print_r( $rn->run(0, [1, 1, 1]) ); | |
echo "<br>" . PHP_EOL; | |
echo "S2:". PHP_EOL; | |
print_r( $rn->run(1, [1, 1, 1]) ); | |
echo "<br>" . PHP_EOL; | |
//1000 épocas | |
for($i=0; $i<1000; $i++){ | |
$rn->BackPropagation([0, 0, 0], [0.1, 0.2]); //para la entrada 0,0,0 se espera la salida 0.1, 0.2 | |
$rn->BackPropagation([0, 0, 1], [0.3, 0.4]); //para la entrada 0,0,1 se espera la salida 0.3, 0.4 | |
$rn->BackPropagation([0, 1, 0], [0.5, 0.6]); //para la entrada 0,1,0 se espera la salida 0.5, 0.6 | |
$rn->BackPropagation([0, 1, 1], [0.7, 0.8]); //para la entrada 0,1,1 se espera la salida 0.7, 0.8 | |
} | |
//Estado final de la red | |
echo "<hr>0 0 0<br>". PHP_EOL;; | |
echo "S1:". PHP_EOL; | |
print_r( $rn->run(0, [0, 0, 0]) ); | |
echo "<br>" . PHP_EOL; | |
echo "S2:". PHP_EOL; | |
print_r( $rn->run(1, [0, 0, 0]) ); | |
echo "<br>" . PHP_EOL; | |
echo "<hr>0 0 1<br>". PHP_EOL;; | |
echo "S1:". PHP_EOL; | |
print_r( $rn->run(0, [0, 0, 1]) ); | |
echo "<br>" . PHP_EOL; | |
echo "S2:". PHP_EOL; | |
print_r( $rn->run(1, [0, 0, 1]) ); | |
echo "<br>" . PHP_EOL; | |
echo "<hr>0 1 0<br>". PHP_EOL;; | |
echo "S1:". PHP_EOL; | |
print_r( $rn->run(0, [0, 1, 0]) ); | |
echo "<br>" . PHP_EOL; | |
echo "S2:". PHP_EOL; | |
print_r( $rn->run(1, [0, 1, 0]) ); | |
echo "<br>" . PHP_EOL; | |
echo "<hr>0 1 1<br>". PHP_EOL;; | |
echo "S1:". PHP_EOL; | |
print_r( $rn->run(0, [0, 1, 1]) ); | |
echo "<br>" . PHP_EOL; | |
echo "S2:". PHP_EOL; | |
print_r( $rn->run(1, [0, 1, 1]) ); | |
echo "<br>" . PHP_EOL; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment