-
-
Save ikegami-yukino/81ea00fcd261660ecc60a8937f077528 to your computer and use it in GitHub Desktop.
Japanese summarization module using LexRank algorithm.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# The MIT License (MIT) | |
# Copyright © 2015 Recruit Technologies Co.,Ltd. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import collections | |
import re | |
import numpy as np | |
import networkx as nx | |
from sklearn.feature_extraction import DictVectorizer | |
from sklearn.metrics import pairwise_distances | |
from janome.tokenizer import Tokenizer | |
__doc__ = """Japanese summarization module using LexRank algorithm. | |
This module was reconsturcted from summpy. | |
- https://pypi.python.org/pypi/summpy/ | |
- https://github.com/recruit-tech/summpy | |
- https://recruit-tech.co.jp/blog/2015/10/30/summpy-released/ | |
Requirements | |
- numpy | |
- networkx | |
- scipy | |
- scikit-learn | |
- janome | |
""" | |
__version__ = "0.1.2" | |
__author__ = "Shumpei IINUMA" | |
__maintainer__ = "Hajime Nakagami<[email protected]>" | |
__all__ = ['summarize'] | |
tokenizer = Tokenizer() | |
def word_splitter_ja(sent): | |
def _is_stopword(n): | |
if len(n.surface) == 0: | |
return True | |
elif re.search(r'^[\s!-@\[-`\{-~ 、-〜!-@[-`]+$', n.surface): | |
return True | |
elif re.search(r'^(接尾|非自立)', n.part_of_speech.split(',')[1]): | |
return True | |
elif 'サ変・スル' == n.infl_form or u'ある' == n.base_form: | |
return True | |
elif re.search(r'^(名詞|動詞|形容詞)', n.part_of_speech.split(',')[0]): | |
return False | |
else: | |
return True | |
return [n.base_form for n in tokenizer.tokenize(sent) if not _is_stopword(n)] | |
def sent_splitter_ja(text, delimiters=set('。.?!\n\r'), parenthesis='()「」『』“”'): | |
''' | |
Args: | |
text: string that contains multiple Japanese sentences. | |
delimiters: set() of sentence delimiter characters. | |
parenthesis: to be checked its correspondence. | |
Returns: | |
list of sentences. | |
''' | |
paren_chars = set(parenthesis) | |
close2open = dict(zip(parenthesis[1::2], parenthesis[0::2])) | |
sentences = [] | |
pstack = [] | |
buff = [] | |
for i, c in enumerate(text): | |
c_next = text[i+1] if i+1 < len(text) else None | |
# check correspondence of parenthesis | |
if c in paren_chars: | |
if c in close2open: # close | |
if len(pstack) > 0 and pstack[-1] == close2open[c]: | |
pstack.pop() | |
else: # open | |
pstack.append(c) | |
buff.append(c) | |
if c in delimiters: | |
if len(pstack) == 0 and c_next not in delimiters: | |
s = ''.join(buff).strip() | |
if s: | |
sentences.append(s) | |
buff = [] | |
if len(buff) > 0: | |
s = ''.join(buff).strip() | |
if s: | |
sentences.append(s) | |
return sentences | |
def lexrank( | |
sentences, continuous=False, word_splitter=word_splitter_ja, sim_threshold=0.1, alpha=0.9 | |
): | |
''' | |
compute centrality score of sentences. | |
Args: | |
sentences: [u'こんにちは.', u'私の名前は飯沼です.', ... ] | |
continuous: if True, apply continuous LexRank. (see reference) | |
word_splitter: function to spilit to words | |
sim_threshold: if continuous is False and smilarity is greater or | |
equal to sim_threshold, link the sentences. | |
alpha: the damping factor of PageRank | |
Returns: tuple | |
( | |
{ | |
# sentence index -> score | |
0: 0.003, | |
1: 0.002, | |
... | |
}, | |
similarity_matrix | |
) | |
Reference: | |
Günes Erkan and Dragomir R. Radev. | |
LexRank: graph-based lexical centrality as salience in text | |
summarization. (section 3) | |
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume22/erkan04a-html/erkan04a.html | |
''' | |
# configure ranker | |
ranker_params = {'max_iter': 1000} | |
ranker = nx.pagerank_scipy | |
ranker_params['alpha'] = alpha | |
graph = nx.DiGraph() | |
# sentence -> tf | |
sent_tf_list = [] | |
for sent in sentences: | |
words = word_splitter(sent) | |
tf = collections.Counter(words) | |
sent_tf_list.append(tf) | |
sent_vectorizer = DictVectorizer(sparse=True) | |
sent_vecs = sent_vectorizer.fit_transform(sent_tf_list) | |
# compute similarities between senteces | |
sim_mat = 1 - pairwise_distances(sent_vecs, sent_vecs, metric='cosine') | |
linked_rows, linked_cols = np.where( | |
sim_mat > 0 if continuous else sim_mat >= sim_threshold | |
) | |
# create similarity graph | |
graph.add_nodes_from(range(sent_vecs.shape[0])) | |
for i, j in zip(linked_rows, linked_cols): | |
if i != j: | |
weight = sim_mat[i, j] if continuous else 1.0 | |
graph.add_edge(i, j, weight=weight) | |
scores = ranker(graph, **ranker_params) | |
return scores, sim_mat | |
def summarize(sentences, sent_limit=None, char_limit=None, imp_require=None, **lexrank_params): | |
''' | |
Args: | |
sentences: text to be summarized or list of sentence | |
sent_limit: summary length (the number of sentences) | |
char_limit: summary length (the number of characters) | |
imp_require: cumulative LexRank score [0.0-1.0] | |
Returns: | |
list of extracted sentences | |
''' | |
if isinstance(sentences, str): | |
sentences = sent_splitter_ja(sentences) | |
scores, sim_mat = lexrank(sentences, **lexrank_params) | |
sum_scores = sum(scores.values()) | |
acc_scores = 0.0 | |
indexes = set() | |
num_sent, num_char = 0, 0 | |
for i in sorted(scores, key=lambda i: scores[i], reverse=True): | |
num_sent += 1 | |
num_char += len(sentences[i]) | |
if sent_limit is not None and num_sent > sent_limit: | |
break | |
if char_limit is not None and num_char > char_limit: | |
break | |
if imp_require is not None and acc_scores / sum_scores >= imp_require: | |
break | |
indexes.add(i) | |
acc_scores += scores[i] | |
return [sentences[i] for i in sorted(indexes)] | |
if __name__ == '__main__': | |
def _get_bocchan_text(): | |
import io | |
import requests | |
import zipfile | |
r = requests.get('https://www.aozora.gr.jp/cards/000148/files/752_ruby_2438.zip') | |
f = zipfile.ZipFile(io.BytesIO(r.content)).open('bocchan.txt') | |
text = f.read().decode('cp932') | |
text = re.sub(r'《[^》]+》', '', text) | |
text = re.sub(r'|', '', text) | |
text = re.sub(r'[.+?]', '', text) | |
text = re.sub(r'-----[\s\S]*-----', '', text) | |
text = re.split('底本:', text)[0] | |
return text | |
text = _get_bocchan_text() | |
result = summarize(text, char_limit=400) | |
print('\n\nsummarize(char_limit=400)') | |
print('\n'.join(result)) | |
result = summarize(text, sent_limit=10) | |
print('\n\nsummarize(sent_limit=10)') | |
print('\n'.join(result)) | |
result = summarize(text, char_limit=400, continuous=True) | |
print('\n\nsummarize(char_limit=400, continuous=True)') | |
print('\n'.join(result)) | |
result = summarize(text, sent_limit=10, continuous=True) | |
print('\n\nsummarize(sent_limit=10, continuous=True)') | |
print('\n'.join(result)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment