Created
March 23, 2017 12:48
-
-
Save ikhlestov/54a894a7e5c06dd536dc0b7f6c5acd04 to your computer and use it in GitHub Desktop.
02_Profiling Tensorflow with timeline
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import tempfile | |
import tensorflow as tf | |
from tensorflow.contrib.layers import fully_connected as fc | |
from tensorflow.examples.tutorials.mnist import input_data | |
from tensorflow.python.client import timeline | |
batch_size = 100 | |
inputs = tf.placeholder(tf.float32, [batch_size, 784]) | |
targets = tf.placeholder(tf.float32, [batch_size, 10]) | |
with tf.variable_scope("layer_1"): | |
fc_1_out = fc(inputs, num_outputs=500, activation_fn=tf.nn.sigmoid) | |
with tf.variable_scope("layer_2"): | |
fc_2_out = fc(fc_1_out, num_outputs=784, activation_fn=tf.nn.sigmoid) | |
with tf.variable_scope("layer_3"): | |
logits = fc(fc_2_out, num_outputs=10) | |
loss = tf.reduce_mean( | |
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=targets)) | |
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) | |
if __name__ == '__main__': | |
mnist_save_dir = os.path.join(tempfile.gettempdir(), 'MNIST_data') | |
mnist = input_data.read_data_sets(mnist_save_dir, one_hot=True) | |
config = tf.ConfigProto() | |
config.gpu_options.allow_growth = True | |
with tf.Session(config=config) as sess: | |
sess.run(tf.global_variables_initializer()) | |
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) | |
run_metadata = tf.RunMetadata() | |
for i in range(3): | |
batch_input, batch_target = mnist.train.next_batch(batch_size) | |
feed_dict = {inputs: batch_input, | |
targets: batch_target} | |
sess.run(train_op, | |
feed_dict=feed_dict, | |
options=options, | |
run_metadata=run_metadata) | |
fetched_timeline = timeline.Timeline(run_metadata.step_stats) | |
chrome_trace = fetched_timeline.generate_chrome_trace_format() | |
with open('timeline_02_step_%d.json' % i, 'w') as f: | |
f.write(chrome_trace) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment