Created
July 21, 2016 14:48
-
-
Save ikhlestov/9a9e25cac5e536da813f72650fb671ae to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def mi_linear(arg1, arg2, output_size, global_bias_start=0.0, scope=None): | |
"""Multiplicated Integrated Linear map: | |
See http://arxiv.org/pdf/1606.06630v1.pdf | |
A * (W[0] * arg1) * (W[1] * arg2) + (W[0] * arg1 * bias1) + (W[1] * arg2 * bias2) + global_bias. | |
Args: | |
arg1: batch x n, Tensor. | |
arg2: batch x n, Tensor. | |
output_size: int, second dimension of W[i]. | |
global_bias_start: starting value to initialize the global bias; 0 by default. | |
scope: VariableScope for the created subgraph; defaults to "MILinear". | |
Returns: | |
A 2D Tensor with shape [batch x output_size] equal to | |
sum_i(args[i] * W[i]), where W[i]s are newly created matrices. | |
Raises: | |
ValueError: if some of the arguments has unspecified or wrong shape. | |
""" | |
if arg1 is None: | |
raise ValueError("`arg1` must be specified") | |
if arg2 is None: | |
raise ValueError("`arg2` must be specified") | |
if output_size is None: | |
raise ValueError("`output_size` must be specified") | |
a1_shape = arg1.get_shape().as_list()[1] | |
a2_shape = arg2.get_shape().as_list()[1] | |
# Computation. | |
with vs.variable_scope(scope or "MILinear"): | |
matrix1 = vs.get_variable("Matrix1", [a1_shape, output_size]) | |
matrix2 = vs.get_variable("Matrix2", [a2_shape, output_size]) | |
bias1 = vs.get_variable("Bias1", [1, output_size], | |
initializer=init_ops.constant_initializer(0.5)) | |
bias2 = vs.get_variable("Bias2", [1, output_size], | |
initializer=init_ops.constant_initializer(0.5)) | |
alpha = vs.get_variable("Alpha", [output_size], | |
initializer=init_ops.constant_initializer(2.0)) | |
arg1mul = math_ops.matmul(arg1, matrix1) | |
arg2mul = math_ops.matmul(arg2, matrix2) | |
res = alpha * arg1mul * arg2mul + (arg1mul * bias1) + (arg2mul * bias2) | |
global_bias_term = vs.get_variable( | |
"GlobalBias", [output_size], | |
initializer=init_ops.constant_initializer(global_bias_start)) | |
return res + global_bias_term |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment