Skip to content

Instantly share code, notes, and snippets.

@ikouchiha47
Created August 29, 2018 12:33
Show Gist options
  • Save ikouchiha47/0713a1e2a9a12569ca0d076311c80478 to your computer and use it in GitHub Desktop.
Save ikouchiha47/0713a1e2a9a12569ca0d076311c80478 to your computer and use it in GitHub Desktop.
import numpy as np
import cv2 as cv
import math
# the MPI model(16 parts):
# http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel
# https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt
# (to simplify this sample, the body models are restricted to a single person.)
# the hand pose model:
# http://posefs1.perception.cs.cmu.edu/OpenPose/models/hand/pose_iter_102000.caffemodel
# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/models/hand/pose_deploy.prototxt
threshold = 0.1
HAND_PARTS = {
"BOTTOM": 0, "BOTTOM1": 1,
"THUMBBOTTOM": 2, "THUMBMID": 3, "THUMBTOP": 4,
"INDEXBOTTOM": 5, "INDEXMID1": 6, "INDEXMID2": 7, "INDEXTOP": 8,
"MIDBOTTOM": 9, "MIDMID1": 10, "MIDMID2": 11, "MIDTOP": 12,
"RINGBOTTOM": 13, "RINGMID1": 14, "RINGMID2": 15, "RINGTOP": 16,
"PINKYBOTTOM": 17, "PINKYMID1": 18, "PINKYMID2": 19, "PINKYTOP": 20, "HEAVEN": 21
}
POSE_PAIRS = [
["BOTTOM", "BOTTOM1"], ["BOTTOM1", "THUMBBOTTOM"], ["THUMBBOTTOM", "THUMBMID"], ["THUMBMID", "THUMBTOP"],
["BOTTOM", "INDEXBOTTOM"], ["INDEXBOTTOM", "INDEXMID1"], ["INDEXMID1", "INDEXMID2"], ["INDEXMID2", "INDEXTOP"],
["BOTTOM", "MIDBOTTOM"], ["MIDBOTTOM", "MIDMID1"], ["MIDMID1", "MIDMID2"], ["MIDMID2", "MIDTOP"],
["BOTTOM", "RINGBOTTOM"], ["RINGBOTTOM", "RINGMID1"], ["RINGMID1", "RINGMID2"], ["RINGMID2", "RINGTOP"],
["BOTTOM", "PINKYBOTTOM"], ["PINKYBOTTOM", "PINKYMID1"], ["PINKYMID1", "PINKYMID2"], ["PINKYMID2", "PINKYTOP"]
]
protofile = "./proto/hand_pose.prototxt"
modelfile = "./models/pose_iter_102000.caffemodel"
inWidth = 368
inHeight = 368
net = cv.dnn.readNetFromCaffe(protofile, modelfile)
cap = cv.VideoCapture(0)
while True:
ret, frame = cap.read()
frame = cv.flip(frame, 1)
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
inp = cv.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
(0, 0, 0), swapRB=False, crop=False)
net.setInput(inp)
out = net.forward()
if (len(HAND_PARTS) != out.shape[1]):
continue
assert(len(HAND_PARTS) == out.shape[1])
points = []
for i in range(len(HAND_PARTS)):
# Slice heatmap of corresponging body's part.
heatMap = out[0, i, :, :]
# Originally, we try to find all the local maximums. To simplify a sample
# we just find a global one. However only a single pose at the same time
# could be detected this way.
_, conf, _, point = cv.minMaxLoc(heatMap)
x = (frameWidth * point[0]) / out.shape[3]
y = (frameHeight * point[1]) / out.shape[2]
# Add a point if it's confidence is higher than threshold.
points.append((int(x), int(y)) if conf > threshold else None)
for pair in POSE_PAIRS:
partFrom = pair[0]
partTo = pair[1]
assert(partFrom in HAND_PARTS)
assert(partTo in HAND_PARTS)
idFrom = HAND_PARTS[partFrom]
idTo = HAND_PARTS[partTo]
if points[idFrom] and points[idTo]:
cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
t, _ = net.getPerfProfile()
freq = cv.getTickFrequency() / 1000
cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
cv.imshow('OpenPose using OpenCV', frame)
k = cv.waitKey(30) & 0xff
if k == 27:
break
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment